Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС), например, автомобилей, и передачи движения от ДВС к ведущим колесам.
В большинстве автомобилей применяется ступенчатое регулирование трансмиссии, которое осуществляется коробкой передач с несколькими ступенями регулирования, например в легковом автомобиле число ступеней в коробке передач обычно составляет 4…6. Такое ступенчатое регулирование применяется практически во всех грузовых автомобилях и тракторах. В сельскохозяйственных тракторах, где технология производства работ выдвигает особые требования к регулированию скорости движения, применяют коробки передач с 10…18 ступенями. Ограниченное число ступеней в коробке скоростей приводит к тому, что двигатель работает во многих случаях на неоптимальном режиме, что увеличивает расход топлива. Поэтому в настоящее время наблюдается тенденция увеличения числа ступеней в коробке передач. Например, в большегрузных автомобилях применяют коробки с 12…16 ступенями. Переход с одной ступени на другую в ходе движения автомобиля в таких многоступенчатых коробках скоростей создает для водителя большие трудности, что приводит к необходимости применения мехатронных систем управления.
Автоматические коробки передач, которые применяются в легковых автомобилях, автоматизируют только процесс переключения скоростей в ступенчатой коробке; за эту автоматизацию потребитель платит повышенным на 12…15% расходом топлива и повышенной стоимостью машины.
Из технической литературы известно большое разнообразие механических, гидравлических и электрических бесступенчато регулируемых передач. Казалось бы, именно их и надо применить вместо ступенчатой коробки в автомобиле. Однако многие десятилетия работы передовых производителей автомобилей в этом направлении не принесли желаемого результата.
Сегодня такие фирмы как Дженерал Моторс, Ауди, Хонда и Ниссан разрабатывают и успешно применяют вариаторы CVT. Например, одна из последних моделей этого вариатора (Multitronic) применительно к автомобилю Ауди А6 с объемом двигателя 2,8 литра передает вращающий момент 280 Нм, при этом расход топлива составляет 9,7 литра на 100 км, что на 0,2 литра меньше, чем в машина с обычной коробкой передач. Недостатком трансмиссий автомобиля с клиноременным вариатором является то, что по диапазону регулирования и по силовым возможностям эти вариаторы применимы только в легковых автомобилях малой мощности.
В настоящее время такие крупнейшие производители тракторов, как Fendt, Ferguson и John Deere, вот уже несколько лет производят трактора с двигателем мощностью 250…425 л.с., снабженные бесступенчато регулируемой трансмиссией. В этих трансмиссиях применяется либо механический вариатор с раздвижными коническими дисками (Fendt Vario), либо систему с разветвлением мощности, в одной из ветвей которой используется аксиально-поршневой насос-мотор регулируемой производительности (Auto Power Shift). Таким образом, казалось бы, проблема бесступенчатой трансмиссии наконец-то получила удовлетворительное решение. В то же время обращает на себя внимание тот факт, что эти бесступенчатые трансмиссии применены только в весьма крупных тракторах. Мы не наблюдаем применение этих передач на тракторах меньшей мощности, на грузовых и легковых автомобилях.
В качестве прототипа принят силовой агрегат транспортного средства с бесступенчатой трансмиссией (пат. РФ №2108926, B60K 17/08, опубл. 20.04.1998), содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, реверсивный редуктор, выходной вал вариатора соединен с преобразователем колебательного движения в реверсивное вращательное, представляющим собой ведущий вал, на котором посредством муфт свободного хода установлены одни конические шестерни, связанные между собой другими коническими шестернями, и соединенными с ведомыми валами, связанными с выходным валом, соединенным через сцепную муфту с ведомым валом трансмиссии.
Трансмиссия снабжена упругой муфтой, расположенной перед преобразователем вращательного движения выходного вала двигателя в колебательное, или в связи последнего с вариатором.
Однако, несмотря на то, что создана компактная трансмиссия с широким диапазоном передаточных отношений, значительны потери на трение в элементах трансмиссии, что увеличивает тепловую напряженность, износ и расход топлива.
Эти недостатки устраняются предлагаемым решением.
Решается задача создания конструкции силового агрегата транспортного средства применительно к четырехтактному четырехцилиндровому двигателю.
Технический результат - повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение.
Этот технический результат достигается тем, что в варианте 1 в силовом агрегате транспортного средства, содержащем двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора; вариант 2 отличается от варианта 1 тем, что при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора.
Применена дезаксиальная схема механизма привода поршней двигателя, в результате чего примерно в пять раз снижается работа сил трения между поршнем и цилиндром; только от этого на 16,3% повышается топливная экономичность ДВС, уменьшаются тепловая напряженность работы ДВС и износ деталей поршневой группы.
В импульсном вариаторе имеется качающееся звено, амплитуда качания которого регулируется. Далее это качательное движение с помощью обгонной муфты преобразуется в однонаправленное вращение выходного вала вариатора. Особенность применения импульсного вариатора в приводе от ДВС состоит в том, что в ДВС относительно просто получить качающееся звено для импульсного вариатора. Для этого достаточно возвратно-поступательное движение поршня, которое имеет место в ДВС, превратить в качательное движение некоего коромысла. В обычном ДВС возвратно-поступательное движение поршня превращается во вращение кривошипа коленчатого вала.
Предлагаемая схема достаточно проста в исполнении и технологична в работе.
Предлагаемое решение схематично представлено на чертежах.
Фиг.1. Трансмиссия с четырехтактным четырехцилиндровым однорядным двигателем.
Фиг.2. Трансмиссия с четырехтактным четырехцилиндровым двухрядным двигателем.
Фиг.3. Импульсный вариатор.
Фиг.4. Механизм движения поршня.
Силовой агрегат транспортного средства включает ДВС, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное.
ДВС включает механизм привода поршня 1, который совершает возвратно-поступательное движение в цилиндре 2, шатун 3 передает это движение на коромысло 4, которое совершает качательное движение относительно точки О, смещенной относительно оси движения поршня 1. Такая схема привода поршня называется дезаксиальной (фиг.4).
В рассмотренном примере такого привода точка О смещена относительно оси движения поршня 1 на расстояние, равное 0,5 h, где h - ход поршня. Тогда точка О располагается на окружности радиуса OO1=0,5 h и амплитуда качания коромысла 4 будет равна +/-45 угловых градусов от линии OO1, а размер коромысла 4 r=0,707 h.
Следствием такой кинематики привода поршня угол β отклонения шатуна 3 от вертикали во всех положениях поршня будет меньше, чем это имеет место в обычном ДВС. От величины угла β зависит сила прижатия поршня к цилиндру и тем самым определяется работа силы трения поршня о цилиндр. Чем больше угол β, тем больше потери на трение в контакте поршня и цилиндра. Нами вычислены работа сил трения за цикл движения поршня в этом контакте. Полученный результат оказался в пять раз меньшим, чем та же работа силы трения в обычном ДВС при одинаковых ходах поршня. Это приводит к повышению механического КПД ДВС и, как следствие, к уменьшению расхода топлива на 16,3%, уменьшению тепловой напряженности работы ДВС и существенному уменьшению износа деталей поршневой группы.
В настоящей заявке представлено два варианта силового агрегата применительно к четырехтактному четырех цилиндровому ДВС: вариант 1 - силовой агрегат с однорядным расположением цилиндров ДВС и вариант 2 - расположение цилиндров ДВС в два ряда, по два цилиндра в ряду.
Рассмотрим силовой агрегат, выполненный по варианту 1.
Силовой агрегат транспортного средства (фиг.1), состоит из однорядного четырехтактного четырехцилиндрового ДВС и бесступенчатой трансмиссии, включающей импульсный вариатор 5, причем вариатор 5 встроен в ДВС таким образом, что делит однорядный двигатель на две части: по одну сторону от вариатора 5 находятся поршни 1(1) и 1(3) двигателя, а по другую сторону - поршни 1(2) и 1(4), двигатель содержит также привод маховика 6, привод газораспределительного механизма 7 (оба эти привода описаны ниже) и устройство для подачи топлива в двигатель (в описании не рассматривается, так как не отличается от таких устройств, применяемых в обычных ДВС). Вариатор 5 соединен с выходными валами 8 и 9 двигателя, которые являются входными для вариатора 5. Трансмиссия содержит также механизм конического реверса, карданную передачу на ведущий мост и ведущие колеса транспортного средства (на чертежах не показаны). Привод маховика 6 осуществляется коромыслом 10, установленным на валу 8. От коромысла 10 приводится кривошип 11, связанный с маховиком 12.Привод распределительного вала 13 газораспределительного механизма 7 осуществляется либо от вала 8, либо от вала 9. Для этого на валах 8 и 9 установлены обгонные муфты 14 и пары зубчатых колес 15.
Импульсный вариатор 5 (фиг.3) имеет два входных вала 8 и 9, которые являются выходными валами двигателя, расположенных на одной геометрической оси OO, по разные стороны корпуса 16 вариатора. 5. Каждый из этих валов несет кривошип 17 и коническое колесо 18, находящиеся в зацеплении с коническим колесом 19, ось 20 которого находится в корпусе 16 вариатора. Конические колеса 18 и 19 образуют механизм конического реверса. Таким образом, валы 8 и 9 связаны между собой механизмом конического реверса. Это значит, что, если один из входных валов вращается в направлении часовой стрелки, то другой входной вал вращается в направлении против часовой стрелки. Кривошипы 17 валов 8 и 9 соединены с двуплечими рычагами 21, которые имеют опоры 22. Опоры 22 расположены на одной геометрической оси O1O1 в ползуне 23, который с помощью регулирующего механизма может перемещаться в вертикальном направлении (на фиг.3 регулирующий механизм не показан). Привод регулирующего механизма осуществляет электродвигатель. Опоры 22 обеспечивают свободу рычагам 21 в колебательном и поступательном движениях.
Двуплечие рычаги 21 в точках А1 и А2 соединены с тягами 24, передающими движение на обгонные муфты 25, установленные на выходном валу 26 вариатора 5 и приводящие его во вращение только в одном направлении. Для простоты объяснения на фиг.3 представлен весьма примитивный обгонный механизм храпового типа. Известны также другие обгонные механизмы, которые удовлетворяют высоким требованиям по несущей способности и долговечности и которые могут использоваться вместо храпового механизма.
Рассмотрим силовой агрегат, выполненный по варианту 2 (фиг.2).
Этот вариант выполнения силового агрегата интересен тем, что в сравнении с ДВС с однорядным расположением цилиндров и в сравнении с силовым агрегатом, выполненным по варианту 1, длина силового агрегата по варианту 2 оказывается меньше. Это важно в ряде случаев встройки силового агрегата в автомобиль. Таким образом, отличие силовых агрегатов, выполненных по варианту 1 и 2, заключается только в различных устройствах их ДВС, где цилиндры расположены с одной стороны от корпуса вариатора.
Схема силового агрегата, выполненная по варианту 2, содержит расположенные в два ряда поршни ДВС 1(1) и 1(3), образующие один ряд, и поршни 1(2) и 1(4), образующие второй ряд. Шатуны 3 поршней 1 (1) и 1(3) установлены на оси 27, а шатуны поршней 1(2) и 1(4) на оси 28. Оси 27 и 28 расположены на расстоянии r, например, r=0,707 h, no разные стороны от оси вала 8. Оси движения поршней сдвинуты относительно вала 8 на расстояние r и таким образом механизм привода поршней имеет дезаксиал, аналогичный тому, который описан выше (фиг.4).
Вал 8 соединен с осями 27 и 28 с помощью пластин 29, связывающих ось с входным валом вариатора 5. ДВС силового агрегата содержит привод маховика 6, привод газораспределительного механизма 7, механизм подачи топлива (на фиг.2 не показан) и соединен с импульсным вариатором 5 с помощью вала 8, который является ведущим валом вариатора 5. Трансмиссия силового агрегата содержит карданный вал, приводимый от выходного вала 26 вариатора 5, ведущий мост и колеса транспортного средства (Эти узлы трансмиссии на фиг.2 не показаны.).
Устройство механизма привода маховика 6, газораспределительного механизма 7 и импульсного вариатора 5 такое же, как описаны в силовом агрегате, выполненном по варианту 1.
Вал 8 является ведущим валом импульсного вариатора 5, а вал 9 используется только для привода газораспределительного механизма 7.
Силовой агрегат по варианту 1 работает следующим образом.
Цилиндры ДВС с поршнями 1(1), 1(2), 1(3), 1(4) расположены в ряд и пронумерованы в соответствии с порядком их работы. Пусть рабочий такт совершается в данный момент времени в цилиндре 1(1). Тогда поршнем 1(2) совершается такт сжатия рабочей смеси, в цилиндре с поршнем 1(3) - такт всасывания, в цилиндре с поршнем 1(4) - такт выхлопа. Поскольку рабочий ход происходит в цилиндре с поршнем 1(1), то от поршня в этом цилиндре через шатун 3 и коромысло 4 движение передается на вал 8, который в данный момент времени является ведущим. Для того, чтобы совершались эти такты в ДВС, валы 8 и 9 должны вращаться в разные стороны и амплитуды их качания должны быть равны. Оба эти условия соблюдаются в импульсном вариаторе, поскольку в нем имеется механизм конического реверса. В тот момент времени, когда заканчивается рабочий такт в цилиндре с поршнем 1(1), заканчивается такт сжатия в цилиндре с поршнем 1(2) и начинается в нем рабочий такт. Это значит, что вал 9 становится ведущим, а вал 8 - становится ведомым и изменяет направление своего вращения; в цилиндрах с поршнями 1(1) и 1(3) будут происходить такты выхлопа и сжатия, соответственно, а в цилиндре с поршнем 1(4) - всасывание. Далее рабочий такт совершается последовательно в цилиндрах с поршнями 1(3) и 1(4). Все эти такты совершаются в соответствии с принципом работы четырехтактного четырехцилиндрового ДВС.
Механизм привода маховика приводит его во вращение от качающегося коромысла 10 на кривошип 11. Для осуществления этого привода назначено соответствующее передаточное отношение в механизме привода маховика 6. В тех случаях, когда двигателю требуется подпитка энергией маховика, это автоматически происходит приводом маховика 12, в котором в этом случае приводится коромысло 10 от вращающегося маховика 12.
Распределительный вал 13 газораспределительного механизма вращается только в одну сторону, поскольку он приводится от того вала и обгонных муфт 14, которые в данный момент времени являются ведущими, в результате в соответствии с принципом действия ДВС происходит открытие клапанов и зажигание горючей смеси.
Механизм подачи топлива (на рисунках не показан), например механизм поворота заслонки карбюратора в бензиновых двигателях, снабжен соответствующим приводом. В вариаторе происходит передача движения от ведущего вала, например, от вала 8 на двуплечий рычаг 21 и далее через тягу 24 на одну обгонную муфту 25. Эта обгонная муфта приводит выходной вал 26 вариатора 5 и далее через механизмы трансмиссии приводятся во вращение ведущие колеса транспортного средства. В то же время вал 9 является ведомым, он приводится в качательное движение от зубчатых колес конического реверса, поэтому он вращается в противоположную сторону и потому передача сил на вторую обгонную муфту не происходит. Когда же ведущим становится вал 9, то вращающий момент на выходной вал 26 вариатора 5 передает именно эта вторая обгонная муфта. Таким образом, вращающий момент на выходной вал 26 вариатора 5, и значит, на ведущие колеса транспортного средства передается непрерывно. Регулирование передаточного отношения в вариаторе осуществляется перемещением ползуна 23. При этом синхронно меняется отношение плеч двуплечих рычагов 21 и тем самым меняется амплитуда качания точек A1 и А2 двуплечих рычагов 21 и обгонных муфт 25, тем самым меняется скорость выходного вала 26 и, значит, скорость движения транспортного средства. В примере разработки предложенного силового агрегата показано, что удается реализовать в процессе регулирования в вариаторе совпадение центров опор 22 с точками A1 и А2, тем самым достигается в вариаторе передаточное отношение, равное бесконечности, то есть такое положение, когда ведущие валы привода движутся, а выходной вал вариатора неподвижен и неподвижно транспортное средство. Важно отметить, во-первых, что такая регулировка в трансмиссии производится без размыкания кинематической цепи привода и, во-вторых, достижение нулевой скорости транспортного средства при регулировании в описанном импульсном вариаторе позволяет исключить из трансмиссии муфту сцепления.
Силовой агрегат по варианту 2 работает следующим образом.
Пусть рабочий такт совершается в цилиндре с поршнем 1(1), тогда под действием сил в нем ось 27 повернется относительно вала 8 по часовой стрелке, как показано стрелкой I на фиг.4. В результате в цилиндре с поршнем 1(3) происходит такт всасывания, ось 28 повернется, как показано стрелкой II на фиг.2 и в цилиндрах с поршнями 1(2) и 1(4) происходят такты сжатия и выхлопа, соответственно.
Вал 8 вращается по часовой стрелке и приводит вариатор 5, его механизмы движутся, как описано выше, и одна из обгонных муфт передает вращающий момент на выходной вал 26 вариатора и далее на колеса транспортного средства.
Когда заканчивается рабочий такт в цилиндре с поршнем 1(1), также заканчивается такт сжатия в цилиндре с поршнем 1(2) начинается рабочий такт в цилиндре с поршнем 1(2), в цилиндре с поршнем 1(4) начинается такт всасывания, а в цилиндрах с поршнями 1(1) и 1(3) такты выхлопа и сжатия, соответственно, вал 8 меняет направление вращения, и вторая обгонная муфта передает вращение на выходной вал 26 вариатора 5 и далее на колеса транспортного средства. Далее процесс передачи сил продолжается в соответствии с принципом работы четырехтактного четырехцилиндрового ДС и описанного выше импульсного вариатора.
Предлагаемое решение соответствует критериям «новизна» «изобретательский уровень» и «промышленная применимость».
Изобретение относится к транспортным средствам с двигателем внутреннего сгорания (ДВС). Предложены два варианта силового агрегата. Первый вариант - для однорядного расположения цилиндров ДВС, когда вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора на одной геометрической оси. Второй вариант - для двухрядного расположения цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора, когда шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на ось, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора. Установлен четырехтактный ДВС, импульсный вариатор и применена дезаксиальная схема механизма привода поршней. Достигается повышение топливной экономичности, снижение тепловой напряженности, снижение потерь на трение. 2 н.п. ф-лы, 4 ил.
1. Силовой агрегат транспортного средства, содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, отличающийся тем, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при однорядном расположении цилиндров двигателя вариатор делит ряд цилиндров на две равные части, расположенные по обе стороны корпуса вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, а другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора.
2. Силовой агрегат транспортного средства, содержащий двигатель внутреннего сгорания, трансмиссию, имеющую вариатор с валом, механизм преобразования вращательного движения выходного вала двигателя в колебательное, отличающийся тем, что установлен четырехтактный четырехцилиндровый двигатель внутреннего сгорания, в котором механизм преобразования вращательного движения выходного вала в колебательное выполнен в виде дезаксиального привода поршней, при двухрядном расположении цилиндров двигателя по обе стороны от геометрической оси входного вала вариатора шатуны двигателя, расположенные в одном ряду с одной стороны от корпуса вариатора, установлены на оси, которая вмонтирована в пластину, связывающую эту ось с входным валом вариатора, который выполнен импульсным и содержит два входных вала, расположенных на одной геометрической оси по разные стороны от корпуса вариатора, каждый из этих валов несет кривошип и коническое зубчатое колесо, оба конических колеса находятся в зацеплении с зубчатым колесом, ось вращения которого свободно установлена в корпусе вариатора, каждый кривошип соединен с двуплечим рычагом, ось качания которого закреплена в ползуне с возможностью перемещения для изменения отношения плеч в двуплечем рычаге, один конец которого соединен с кривошипом входного вала, а другой конец каждого двуплечего рычага с помощью шатуна соединен с ведущим звеном обгонной муфты, сидящей на выходном валу вариатора.
БЕССТУПЕНЧАТАЯ ТРАНСМИССИЯ ТРАНСПОРТНОГО СРЕДСТВА | 1996 |
|
RU2108926C1 |
Силовой агрегат | 1985 |
|
SU1268444A1 |
Автоматическая трансмиссия транспортного средства | 1990 |
|
SU1735077A1 |
ДЕЗАКСИАЛЬНЫЙ КРИВОШИПНО-ПОЛЗУННЫЙ МЕХАНИЗМ ЯРИМОВА | 2002 |
|
RU2267672C2 |
EP 0953789 A1, 03.11.1999. |
Авторы
Даты
2013-11-20—Публикация
2012-06-22—Подача