ВЫПАРНОЙ АППАРАТ Российский патент 2013 года по МПК B01D1/00 

Описание патента на изобретение RU2501590C2

Изобретение относится области применения акустической техники в процессах и аппаратах химической технологии и, в частности, может быть использовано для выпаривания жидкостей и концентрирования технологических растворов.

Практически все известные типы промышленных выпарных аппаратов (аппараты с трубчатыми греющими камерами, пленочные аппараты, контактные аппараты и т.д.), применяемые для выпаривания больших объемов жидкостей и концентрирования больших объемов растворов, требуют при работе высоких энергозатрат, связанных с необходимостью нагревания жидкостей до температуры кипения и поддержания этой температуры в течение достаточно продолжительного времени. В ряде случаев дополнительно расходуется энергия для создания повышенного или пониженного давления внутри выпарного аппарата. Выпаривание жидкостей при температурах ниже температуры кипения резко снижает производительность аппарата и увеличивает продолжительность процесса выпаривания, что неприемлемо для многотоннажных производств.

Известны устройства, в которых для выпаривания помимо нагревания используют электрострикционный эффект или обратный пьезоэлектрический эффект, создавая в выпариваемой жидкости с помощью пьезоэлектрических элементов условия ультразвуковой кавитации, за счет чего возрастает интенсивность парообразования.

Так, в опубликованной заявке JP 8-215308, 1996 г.описано малогабаритное бытовое выпарное устройство для подачи в атмосферу помещения паров инсектицидных или ароматических жидкостей. Устройство включает корпус и резервуар с жидкостью, в которую одним концом погружен пористый стержень. Сверху стержня на керамической подложке размещен пьезоэлектрик, соединенный последовательно с ультразвуковым осциллятором и источником энергии, также размещенными в корпусе устройства. Недостатками устройства являются его очень малая мощность и низкая производительность, недостаточные для промышленного производства.

Известно также выпарное устройство для топливных батарей (опубликованная заявка JP 2007-303774, 2007 г.), использующееся для увлажнения газа, в котором пьезоэлектрический элемент помещен около дна резервуара с водой. Мощность и производительность этого устройства также очень ограничены.

Возможности повышения мощности и производительности выпарных аппаратов связаны с разработкой и совершенствованием конструкций и материалов акустических излучателей.

Известен источник акустического излучения (патент RU 2130000,. 1999 г.), содержащий источник переменного электрического сигнала и многослойный акустический излучатель, при этом нечетные слои акустического излучателя выполнены из электропроводящего материала, а четные слои - из диэлектрического электрострикционного материала.

Так как ряд электрострикционных материалов мажет быть выполнен в виде гибких пленок, а выполненные из электропроводящего материала слои акустического излучателя могут быть выполнены в виде тонкой фольги, то обеспечивается возможность изменять форму волнового фронта генерируемого акустического излучения за счет изменения формы излучающей поверхности, например при плоской излучающей поверхности будет генерироваться акустическое излучение с плоским волновым фронтом, если излучающая поверхность изогнута в виде выпуклой (вогнутой) цилиндрической поверхности, то волновой фронт генерируемого акустического излучения будет иметь форму выпуклой (вогнутой) цилиндрической поверхности. Обеспечение возможности функционального объединения различных элементов интерьера помещений обусловлено возможностью выполнения акустического излучателя в виде гибкой конструкции малой толщины.

Источник переменного электрического сигнала может содержать последовательно соединенные генератор переменного электрического сигнала и усилитель электрического сигнала, причем выход усилителя электрического сигнала соединен с первым входом сумматора электрических сигналов. Такое конструктивное исполнение источника переменного электрического сигнала позволяет использовать маломощный генератор переменного электрического сигнала, а требуемые для работы акустического излучателя параметры переменного электрического сигнала обеспечиваются усилителем электрического сигнала.

Недостатками такого излучателя являются сложность конструкции и управления; небольшая удельная мощность и недостаточная рабочая температура при которой возможно сочетание кавитационного распыления и испарения воды, что делает невозможным его применение для кавитационного распыления воды для испарения в больших объемах.

В US 2011094217, 2011 г.описан источник гидродинамического излучения - электрострикционный композит, в котором для увеличения кавитационного эффекта и упрощения конструкции использованы углеродные нанотрубки, обладающие значительными электрострикционными свойствами. Электрострикционный композит состоит из гибкой полимерной матрицы углеродной нанотрубочной пленочной структуры, расположенной на поверхности матрицы и частично погруженной в матрицу через первую поверхность. Множество нанотрубок в пленочной структуре соединены силой притяжения Ван-дер-Ваальса. Электрострикционный композит представляет собой углеродную нанотрубочную пленочную структуру с по меньшей мере одной пленкой.

Недостатками такой структуры электростриктора являются высокая стоимость порошок углеродных нанотрубок, сложность равномерной укладки углеродных нанотрубок в полимерную матрицу, неоднородная электрическая проводимость по всей поверхности и ограниченная удельная мощность.

Указанные недостатки возможно устранить, если вместо углеродных нанотрубок использовать ленточные наноструктурные волоконные материалы, описанные в опубликованной международной заявке WO 2006/009331, где приведен метод получения на углеродных волоконных материалах слоев наноструктурного углерода, т.е. углерода, который имеет одинаковую кристаллическую структуру с углеродными нанотрубками и обладает теми же электрофизическими характеристиками, что и нанотрубки. В отличие от нанотрубок слой из наноструктурного углерода прочно удерживается на поверхности углеродных волокон и строго направлен в одном направлении, что увеличивает его электрострикционные свойства. Этот слой получается осаждением пиролитического углерода из газовой фазы, состоящей из смеси газообразного углеводорода (метан, пропан, бутан, этилен, ацетилен и др.) и водорода в соотношении 10-30% (объмн.) углеводорода и 70-90% (объемн.) водорода при температуре не менее 1700°C при терморезистивном нагреве углеродных волокнистых материалов. Процесс нанесения слоев наноструктурного углерода ускоряется при повышении температуры подложки вплоть до 3300-3500°C, а далее происходит термическое разрушение структуры углерода. Оптимальной температурой нанесения наноструктурных слоев является температура 2600-2700°C, при которой механические и электрофизические свойства покрытия являются наилучшими. Электрострикционный элемент изготавливается следующим образом: углеродная лента, полученная из вискозного волокна после процессов карбонизации (900°С) и графитации (2300°С) шириной 4 см, и длиной 90 см с электрическим сопротивлением 13-14 Ом/м обрабатыватся в трубчатой кварцевой печи газовой смеси водорода (80%) объемн. и пропан-бутана (20%) объемн. при температуре 2600°C, что соответствует электрической мощности 6,8 кВт. При таких условиях и фиксированном напряжении начинает образовываться на поверхности ленты покрытие из наноструктурного углерода и соответственно начинает уменьшаться активное сопротивление и при этом увеличивается электрическая мощность нагрузки. Процесс продолжается до увеличения мощности до 10 кВт. При этом наращивается слой наноструктурного углерода на поверхности углеродной ленты на 25% вес., а электрическое сопротивление ленты уменьшается до 8 Ом/м.

Устройство предлагаемого выпарного аппарата поясняется с помощью чертежей, где на Фиг.1 показана схема выпаривания с использованием предлагаемого выпарного аппарата. На Фиг.2 схематически изображен выпарной аппарат, вид спереди и вид сбоку.

Электрострикционные излучатели, представляющие собой пластины из электрострикционного материала, изготавливают следующим образом. Углеродную ленту с покрытием наклеивают с помощью полимерных клеев (эпоксидный, кремнийорганический, фенолформальдегидный и др.) на изоляционную керамическую пластину толщиной не более 0,5 мм. С другой стороны наклеивают через стеклоткань металлическую пластину из жести, листового металла из железных сплавов, нержавеющей стали, меди, латуни и др. толщиной также не более 0,5 мм. Поверхность керамической пластины покрывают герметизирующим полимером для придания поверхности гидрофобных свойств. Концы углеродной ленты оснащают электрическими контактами из меди и изолируют также полимерным покрытием. Изготовленные таким образом электрострикционные излучатели 1 устанавливают параллельно в герметичную емкость 4 под наклоном не менее 45° и соединяют последовательно между собой электрическими контактами, выведенными наружу к генератору электрических сигналов. Над электрострикционными излучателями установлен распределительный трубопровод 2 с отверстиями для подачи технологического раствора на каждую поверхность излучателей 1, которые являются одновременно нагревателями, позволяющими нагревать технологический раствор до 70-80°C. Стекая по поверхности излучателя нагревателя, раствор подвергается нагреву и ультразвуковой кавитации. В результате происходит интенсификация процесса испарения воды из раствора. Для интенсификации процесса испарения воды внизу проходит распределительный трубопровод 3 с отверстиями для подачи воздуха.

Выпариваемый раствор подается в выпарной аппарат в виде прямоугольной емкости 4, где на изоляторах расположены под углом 60° ленточные электроды нагреватели-электрострикторы (излучатели). На них подается импульсное высокочастотное напряжение в расчете 1-2 ватт на см площади электродов. Раствор подается через трубопровод 2 с отверстиями, направленными на верхние части ленточных электродов 1, по которым вода стекает вниз. В это время происходит нагрев поверхности электродов 1 до температуры около 70°С и одновременное электрострикционное воздействие на воду. В результате происходит интенсивное испарение воды. Для быстрого уноса паров воды ниже электродов 1 установлены два трубопровода 3 с отверстиями для всасывания сухого горячего воздуха из пластинчатого воздушного теплообменника 5 через дополнительный блок 6 инфракрасного нагрева. Поток подаваемой воды на испарение регулируется таким образом, чтобы температура на поверхности наноструктурированной углеродной ленты не превышала 70°C. Поток 7 подаваемого воздуха нагревают до температуры не менее 130°C.

Объем испаряемой воды (объем конденсата 8) по отношению к объему подаваемого раствора должен составлять не менее 90%. При соблюдении всех условий энергозатраты составляют не более 100 ватт/кг дистиллированной воды. На схеме Фиг.1 позицией 9 обозначен выход концентрированного раствора, а позицией 10 - выход влажного воздуха после отделения конденсата 8.

Таблица Сопоставительные измерения по амплитуде оборотной гармоники (эффективное значение виброскорости в мм/сек и размах виброперемещений в мкм) электрострикционных излучателей, полученных по известному способу и по предлагаемому изобретению (проведены с помощью акселерометра фирмы Эндевко, тип 2228 C). Технические характеристики Измерения характеристик изделия по прототипу Измерения характеристик изделия по предлагаемому изобретению Диапазон измерения характеристик по «Эндевко» тип 2228 С Количество измеряемых осей 1 1 3 Количество пьезоэлементов 1 1 3 Основная чувствительность (датчик+усилитель), мВ/g 100 100 100- Частота резонанса вдоль оси Z, кГц 5 10 21 Частотный диапазон (5%), Гц 10000 10000 5…15000 Размах виброперемещений, мкм 12-19 46-78 0,5-100 мкм Виброскорость, мм/сек 350 1250 0,2…5000 Температурный диапазон, °C +35…+90 +35…+90 -55…+175

Таким образом, выявлено, что амплитуда обратной гармоники электрострикцион-ного излучателя значительно превышает данные характеристики изделия по прототипу.

Похожие патенты RU2501590C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И РЕАКТОР ДЛЯ ИХ ПОЛУЧЕНИЯ 2010
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
RU2493097C2
СПОСОБ ДИСПЕРГИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК УЛЬТРАЗВУКОМ 2017
  • Ткачев Алексей Григорьевич
  • Таров Дмитрий Владимирович
  • Таров Владимир Петрович
  • Шубин Игорь Николаевич
  • Меметов Нариман Рустемович
RU2692541C2
ПОЛИМЕРНЫЙ НАНОКОМПОЗИТ С УПРАВЛЯЕМОЙ АНИЗОТРОПИЕЙ УГЛЕРОДНЫХ НАНОТРУБОК И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Макунин Алексей Владимирович
  • Чечерин Николай Гаврилович
RU2520435C2
РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2010
  • Ткачев Алексей Григорьевич
  • Ткачев Максим Алексеевич
RU2472580C2
Углеродкерамический волокнисто-армированный композиционный материал и способ его получения 2017
  • Бейлина Наталия Юрьевна
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадиевич
RU2684538C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДСОДЕРЖАЩЕГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2021
  • Порозова Светлана Евгеньевна
  • Поздеева Татьяна Юрьевна
  • Каченюк Максим Николаевич
RU2805705C2
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОПОГЛОЩАЮЩЕГО МАТЕРИАЛА 2017
  • Ткачев Алексей Григорьевич
  • Щегольков Александр Викторович
  • Щегольков Алексей Викторович
RU2679388C1
ПОКРЫТИЕ ДЛЯ ФОТОВОЛЬТАИЧЕСКОЙ ЯЧЕЙКИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Десятов Андрей Викторович
  • Асеев Антон Владимирович
  • Булибекова Любовь Владимировна
  • Гинатулин Юрий Мидхатович
  • Графов Дмитрий Юрьевич
  • Ли Любовь Денсуновна
RU2577174C1
Электрод суперконденсатора 2017
  • Сауров Александр Николаевич
  • Козлов Сергей Николаевич
  • Живихин Алексей Васильевич
  • Павлов Александр Александрович
  • Булярский Сергей Викторович
  • Светухин Вячеслав Викторович
  • Рисованый Владимир Дмитриевич
RU2670281C1
УДАЛЕНИЕ ЖЕЛЕЗА ИЗ УГЛЕРОДНЫХ НАНОТРУБОК И РЕЦИРКУЛЯЦИЯ МЕТАЛЛИЧЕСКОГО КАТАЛИЗАТОРА 2021
  • Гейльюс, Дэвид
RU2822481C1

Иллюстрации к изобретению RU 2 501 590 C2

Реферат патента 2013 года ВЫПАРНОЙ АППАРАТ

Изобретение относится области применения акустической техники в процессах и аппаратах химической технологии. Выпарной аппарат содержит герметичную емкость с патрубками для входа и выхода жидкостных и газовых потоков, в которой размещены пластины из электрострикционного композита, последовательно соединенные между собой электрическими контактами. Над пластинами проходит распределительный трубопровод для подачи жидкости, а под пластинами проходит распределительный трубопровод для подачи воздуха, при этом пластины установлены параллельно под наклоном не менее 45°. Электрострикционный композит представляет собой материал, содержащий средний слой из полимерной матрицы со включенными в нее углеродными волокнами, расположенный между керамической пластиной и металлической пластиной, с которыми средний слой соединен с помощью полимерных клеев. Изобретение позволяет увеличить амплитуду обратной гармоники электрострикционного излучателя. 2 ил., 1 табл.

Формула изобретения RU 2 501 590 C2

Выпарной аппарат, содержащий герметичную емкость с патрубками для входа и выхода жидкостных и газовых потоков, в которой размещены пластины из электрострикционного композита, последовательно соединенные между собой электрическими контактами, над пластинами проходит распределительный трубопровод для подачи жидкости, а под пластинами проходит распределительный трубопровод для подачи воздуха, пластины установлены параллельно под наклоном не менее 45°, при этом электрострикционный композит представляет собой материал, содержащий средний слой из полимерной матрицы с включенными в нее углеродными волокнами, расположенный между керамической пластиной и металлической пластиной, с которыми средний слой соединен с помощью полимерных клеев, а толщина керамической пластины и толщина металлической пластины не превышает 0,5 мм каждая.

Документы, цитированные в отчете о поиске Патент 2013 года RU2501590C2

JP 2007303774, 22.11.2007
JP 8215308 А, 27.08.1997
ПЛЕНОЧНЫЙ ИСПАРИТЕЛЬ 2002
  • Фирсов В.М.
  • Карасёв Ю.В.
  • Бакаев В.А.
  • Петрик В.И.
  • Ступин А.Н.
RU2218970C2

RU 2 501 590 C2

Авторы

Цой Александр Дмитриевич

Даты

2013-12-20Публикация

2012-03-22Подача