СПОСОБ СИНТЕЗА 1,2,6,7-БИС-(9Н,10Н-АНТРАЦЕН-9,10-ДИИЛ)ПИРЕНА-МОНОМОЛЕКУЛЯРНОГО ОПТИЧЕСКОГО СЕНСОРА ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ Российский патент 2013 года по МПК C07C13/62 C07C13/64 C07C13/70 C07C2/86 C07C1/26 

Описание патента на изобретение RU2501780C1

Область техники, к которой относится изобретение.

Изобретение относится к области органического синтеза сенсорных материалов и касается тетразамещенного пирена, обладающего сенсорными свойствами и предназначенного для удаленного обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе в сверхмалых концентрациях на основании изменения оптических свойств - тушения фотолюминесценции - означенного сенсора при контакте с молекулами нитроароматических соединений. Изобретение может быть использовано для синтеза сенсорных замещенных пиренов, которые могут найти применение в таможенных службах, силовых структурах (армия, полиция и т.д), научно-исследовательских лабораториях, а также в быту и сельском хозяйстве.

Уровень техники.

Пирен сам по себе достаточно известен как мономолекулярный сенсор на π-дефицитные ароматические соединения, в том числе на нитроароматические производные. Хотя константы тушения фотолюминесценции Штерна-Фольмера у него удовлетворительные, он нашел ограниченное применение как сенсор взрывчатых веществ. Например, в растворенном состоянии, в составе полистирольных нановолокон (Ying Wang, Anthony La, Yu Ding, Yixin Liu, and Yu Lei Adv. Func. Mat. 2012 1, 1), мембрана из которых использовалась для визуального обнаружения скрытых в почве взрывчатых веществ и их паров. Пирен использовался как сенсор для непрямого обнаружения взрывчатых веществ и продуктов их разложения в условиях высокоэффективной жидкостной хроматографии (John V. Goodpaster and Victoria L. McGuffin Anal. Chem. 2001, 73, 2004-2011). В случае 2,4-дипитротолуола константа тушения фотолюминесценции Штерна-Фольмера составила (Ksv=386 М-1).

В настоящее время способов получения 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена 1 (далее бисиптиценопирен) в мировой литературе не описано.

Имеются данные о возможности использования смешанных полимеров, включающих пентиптицен-ацетиленовые звенья для визуального определения 2,4,6-тринитротолуола (THT) на воздухе (Thomas, S.W., III; Joly, G.D.; Swager, T.М. Chem. Rev. 2007, 107, 1339-1386; Yang, J.-S.; Swager, T.M.J. Am. Chem. Soc. 1998, 120, 5321-5322; Yang, J.-S.; Swager, T.M.J. Am. Chem. Soc. 1998, 120, 11864-11873). Также известен способ получения 1,4-диэтинилпроизводных пентиптицена 2 (Thomas, S.W., III; Joly, G.D.; Swager, T.M. Chem. Rev. 2007, 107, 1339-1386; Yang, J.-S.; Swager, T.M.J. Am. Chem. Soc. 1998, 120, 5321-5322; Yang, J.-S.; Swager, T.M.J. Am. Chem. Soc. 1998, 120, 11864-11873), которые являются структурными аналогами 1.

Сущность изобретения.

Сущность изобретения составляет способ получения 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена («бисиптиценопирен») 1 - оптического сенсора на π-дефицитные (гетеро)ароматические соединения, включающий взаимодействие генерируемого in situ аринового производного пирена с антраценом в атмосфере аргона. При подсчете практического выхода, считая на легко доступный тетрабромпирен, выход 1 составляет 40%.

Сведения, подтверждающие возможность осуществления изобретения.

4.1. Синтез 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена (1)

Смесь тетрабромпирена1 (1 Venkataramana, G.; Sankararaman, S. Eur. J. Org. Chem. 2005, 4162.) (1 г, 1.93 ммоль), антрацена (1.78 г, 9.66 ммоль) и трет-бутилата калия (1.34 г, 12 ммоль) суспендируют в 60 мл сухого свежеперегнанного толуола и перемешивают полученную смесь при 140°C в течение 15 ч. Выпавший осадок отфильтровывают, фильтрат упаривают при пониженном давлении. Остаток перекристаллизовывают из толуола, промывают метанолом, сушат на воздухе.

1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирен («бисиптиценопирен»). Tпл>250°C; Выход 0.43 г (0.77 ммоль, 40%). ЯМР 1H (CDCl3): 5.78 (с, 2H, H-C(sp3)), 6.38 (с, 2H, H-C(sp3)), 6.99 (м, 8H, антранил), 7.50 (м, 4H, антранил), 7.95 (д, 2H, 3J 9.2 Гц, пирен), 8.12 (с, 2H, пирен), 8.46 (д, 2H, 3J 9.2 Гц, пирен). ЯМР 13C (CDCl3): 49.88, 54.97, 120.17, 121.44, 121.13, 123.77, 123.93, 125.20, 125.28, 125.87, 127.54, 128.13, 139.02, 142.37, 145.38, 146.28. EI-MS (m/z): 554 (100). Вычислено для C44H26*H2O, %: C 92.28, H 4.93. Найдено, %: C 92.11, H 4.87.

Заявленное соединение представляет собой бесцветное кристаллическое вещество, растворимое в нитробензоле, бензоле, хлороформе, нерастворимое в метаноле и воде.

4.2. Визуальное обнаружение питроароматических соединений с использованием заявляемых соединений (1-2)

Пример 1.

Изучение взаимодействия 1 с нитроароматическими соединениями проводили в растворах сухого тетрагидрофурана в концентрациях сенсора (5-10)·10-6 М в зависимости от значения коэффициента абсорбции по данным УФ (А≤0.1).

Флуоресцентное титрование проводили, используя раствор нитроароматического соединения: 2,4-динитротолуол (ДНТ), 5·10-3 М. Критерием для оценки эффективности заявленных соединений и прототипа являлось значение константы Штерн-Фольмера (Stern-Volmer) - константы тушения, она же константа ассоциации полученного комплекса заявленных соединении нитроароматических соединений и выражаемой уравнением

Io/I=1+Ksv*[Q],

где Io, I - интенсивность флуоресценции до и после добавления нитроароматического соединения (quencher); Q - концентрация нитроароматического соединения, моль/л; Ksv - значение константы, (моль/л)-1

Таблица 1 Значения констант тушения флуоресценции заявленного соединения 1 и соединения-протипа (пирен) в линейном приближении, (моль/л)-1 , M-1 1 , M-1 пирен 2,4-ДНТ 14.32·103 0.93·103

Результаты экспериментов показали высокую эффективность заявленного соединения для визуального обнаружения нитроароматических соединений. Соединение-прототип обладает меньшей эффективностью в аналогичных условиях.

Предложенный способ синтеза является уникальным в ряду пирена.

Похожие патенты RU2501780C1

название год авторы номер документа
СПОСОБ СИНТЕЗА 2-ДОДЕЦИЛ-5-(2,3,7,8-БИС-(9Н,10Н-АНТРАЦЕН-9,10-ДИИЛ)ПИРЕН-1-ИЛ)ТИОФЕНА - МОНОМОЛЕКУЛЯРНОГО ОПТИЧЕСКОГО СЕНСОРА ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 2013
  • Копчук Дмитрий Сергеевич
  • Зырянов Григорий Васильевич
  • Ковалев Игорь Сергеевич
  • Тания Ольга Сергеевна
  • Чупахин Олег Николаевич
RU2532903C1
СПОСОБ СИНТЕЗА 5,5'-(2,3,7,8-БИС-(9Н,10Н-АНТРАЦЕН-9,10-ДИИЛ)ПИРЕН-1,6-ДИИЛ)БИС(2-ДОДЕЦИЛТИОФЕНА) - МОНОМОЛЕКУЛЯРНОГО ОПТИЧЕСКОГО СЕНСОРА ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 2013
  • Копчук Дмитрий Сергеевич
  • Зырянов Григорий Васильевич
  • Ковалев Игорь Сергеевич
  • Тания Ольга Сергеевна
  • Чупахин Олег Николаевич
RU2532164C1
СПОСОБ СИНТЕЗА 2,3,6,7,10,11-ТРИС-(9Н,10Н-АНТРАЦЕН-9,10-ДИИЛ)ТРИФЕНИЛЕНА - МОНОМОЛЕКУЛЯРНОГО ОПТИЧЕСКОГО СЕНСОРА ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 2012
  • Зырянов Григорий Васильевич
  • Ковалев Игорь Сергеевич
  • Слепухин Павел Александрович
  • Копчук Дмитрий Сергеевич
  • Чупахин Олег Николаевич
RU2485084C1
СПОСОБ ПОЛУЧЕНИЯ 1,4-ДИЗАМЕЩЕННЫХ [1.1.1.1.1] ПЕНТИПТИЦЕНОВ 2011
  • Зырянов Григорий Васильевич
  • Ковалев Игорь Сергеевич
  • Слепухин Павел Александрович
  • Копчук Дмитрий Сергеевич
  • Чупахин Олег Николаевич
RU2474568C1
(ЭТАН-1,2-ДИИЛБИС(ОКСИ))БИС(ЭТАН-2,1-ДИИЛ)БИС(ПИРЕН-1-КАРБОКСИЛАТ) - МОНОМОЛЕКУЛЯРНЫЙ ОПТИЧЕСКИЙ СЕНСОР ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2022
  • Ковалев Игорь Сергеевич
  • Садиева Лейла Керим Кызы
  • Тания Ольга Сергеевна
  • Зырянов Григорий Васильевич
  • Чупахин Олег Николаевич
RU2812671C1
12-МЕТОКСИНАФТО[1,8-EF]ПЕРИМИДИН - ХИМИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ НИТРОСОДЕРЖАЩИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2021
  • Никонов Игорь Леонидович
  • Ковалев Игорь Сергеевич
  • Садиева Лейла Керим Кызы
  • Глебов Никита Сергеевич
  • Рыбакова Светлана Сергеевна
  • Кудряшова Екатерина Алексеевна
  • Ладин Евгений Дмитриевич
  • Криночкин Алексей Петрович
  • Копчук Дмитрий Сергеевич
  • Зырянов Григорий Васильевич
  • Чупахин Олег Николаевич
RU2790579C1
ХИМИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ НИТРОАРОМАТИЧЕСКИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ (ВВ) - 10-(4,5-ДИ-p-ТОЛИЛ-1H-1,2,3-ТРИАЗОЛ-1-ИЛ)-2,3-ДИМЕТОКСИ-ПИРИДО[1,2-a]ИНДОЛ 2020
  • Никонов Игорь Леонидович
  • Ковалев Игорь Сергеевич
  • Тания Ольга Сергеевна
  • Садиева Лейла Керимкызы
  • Платонов Вадим Александрович
  • Петрова Виктория Евгеньевна
  • Криночкин Алексей Петрович
  • Копчук Дмитрий Сергеевич
  • Зырянов Григорий Васильевич
  • Чупахин Олег Николаевич
  • Чарушин Валерий Николаевич
RU2756790C1
6-МЕТОКСИБЕНЗО[DE]НАФТО[1,8-GH]ХИНОЛИН - ХИМИЧЕСКИЙ СЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ НИТРОСОДЕРЖАЩИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2021
  • Никонов Игорь Леонидович
  • Ковалев Игорь Сергеевич
  • Садиева Лейла Керим Кызы
  • Халымбаджа Игорь Алексеевич
  • Фатыхов Рамиль Фаатович
  • Шарапов Айнур Диньмухаметович
  • Платонов Вадим Александрович
  • Петрова Виктория Евгеньевна
  • Савчук Мария Игоревна
  • Старновская Екатерина Сергеевна
  • Штайц Ярослав Константинович
  • Копчук Дмитрий Сергеевич
  • Зырянов Григорий Васильевич
  • Чупахин Олег Николаевич
RU2781404C1
5-(9-этил-9Н-карбазол-3-ил)-4-[5-(9-этил-9Н-карбазол-3-ил)-тиофен-2-ил]-пиримидин 2016
  • Вербицкий Егор Владимирович
  • Чепракова Екатерина Михайловна
  • Баранова Анна Александровна
  • Хохлов Константин Олегович
  • Русинов Геннадий Леонидович
  • Чарушин Валерий Николаевич
RU2616617C1
N-([1,1'-БИФЕНИЛ]-3-ИЛ)-4-ФЕНИЛ-1-(ПИРИДИН-2-ИЛ)-6,7-ДИГИДРО-5H-ЦИКЛОПЕНТА[C]ПИРИДИН-3-АМИН - МОНОМОЛЕКУЛЯРНЫЙ ОПТИЧЕСКИЙ СЕНСОР ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ 2022
  • Хасанов Альберт Фаридович
  • Платонов Вадим Александрович
  • Ковалев Игорь Сергеевич
  • Садиева Лейла Керим Кызы
  • Глебов Никита Сергеевич
  • Рыбакова Светлана Сергеевна
  • Тания Ольга Сергеевна
  • Кудряшова Екатерина Алексеевна
  • Ладин Евгений Дмитриевич
  • Криночкин Алексей Петрович
  • Копчук Дмитрий Сергеевич
  • Зырянов Григорий Васильевич
  • Чупахин Олег Николаевич
RU2786741C1

Реферат патента 2013 года СПОСОБ СИНТЕЗА 1,2,6,7-БИС-(9Н,10Н-АНТРАЦЕН-9,10-ДИИЛ)ПИРЕНА-МОНОМОЛЕКУЛЯРНОГО ОПТИЧЕСКОГО СЕНСОРА ДЛЯ ОБНАРУЖЕНИЯ НИТРОАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ

Изобретение относится к способу синтеза 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена 1 путем взаимодействия генерируемого in situ аринового производного пирена с антраценом в атмосфере аргона

Предлагаемое изобретение предоставляет способ синтеза указанного соединения, которое может использоваться в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений. 1 пр., 1 табл.

Формула изобретения RU 2 501 780 C1

Способ синтеза 1,2,6,7-бис-(9H,10H-антрацен-9,10-диил)пирена 1-мономолекулярного оптического сенсора для обнаружения нитроароматических соединений путем взаимодействия генерируемого in situ аринового производного пирена с антраценом в атмосфере аргона

Документы, цитированные в отчете о поиске Патент 2013 года RU2501780C1

Swager, T.M
"Fluorescent porous polymer films as TNT Chemosensors: Electronic and Structural Effects", J
Am
Chem
Soc
Способ и аппарат для получения гидразобензола или его гомологов 1922
  • В. Малер
SU1998A1
CN 102051184 A, 11.05.2011
Thomas S.W., III; Joly, G.D.; Swager, "Chemical sensors based on amplifying fluorescent conjugated polymers" T.M
Chem
Rev
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
СПОСОБ ПОЛУЧЕНИЯ ТРИС-АЦЕТИЛТРИПТИЦЕНА 1993
  • Середа Г.А.
  • Скварченко В.Р.
  • Лаптева В.Л.
RU2118954C1

RU 2 501 780 C1

Авторы

Зырянов Григорий Васильевич

Копчук Дмитрий Сергеевич

Ковалев Игорь Сергеевич

Цейтлер Татьяна Алексеевна

Слепухин Павел Александрович

Чупахин Олег Николаевич

Даты

2013-12-20Публикация

2012-09-03Подача