СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОКАПИЛЛЯРНОГО КОЛЛИМАТОРА ДЛЯ АТОМНО-ЛУЧЕВОЙ ТРУБКИ Российский патент 2013 года по МПК G21K1/02 

Описание патента на изобретение RU2502144C1

Изобретение относится к области квантовой радиофизики и может быть использовано при изготовлении коллиматоров атомно-лучевых трубок, необходимых для формирования атомных пучков, например, в квантовых стандартах частоты.

Как известно (см. «Квантовая электроника» под редакцией С.А. Ахманова М. «Советская энциклопедия», 1969 г.с.35-61), основным элементом коллиматора является мембрана с вертикально сформированными капиллярами, установленная на выходе в активную зону кварцевого резонатора потока возбужденных атомов. Конструкция должна обеспечивать формирование пучка частиц с предельно узким угловым рассеянием, из расчета превышения в несколько раз расстояния свободного пробега возбужденных атомов над диаметром капилляров.

Однако, на практике реализация такого устройства вызывает значительные трудности.

Известен способ изготовления многоканального коллиматора (см. отчет по НИР «Разработка и исследование атомно-лучевой трубки с оптической накачкой и детектированием, обеспечивающей суточную нестабильность 10-14». Номер гос.регистрации У90439 от 01.12.2008 г.Шифр «Урал-2»).

Способ включает сборку в обойму набора никелевых (или из других металлов) трубок диаметром 50-200 мк, длиной 4-20 мм и количеством до 300 шт. Соединение трубок между собой осуществляется пайкой. Однако при нарезке трубок требуемой длины наблюдается их искривление, искажение поперечного сечения, появление вмятин на боковых поверхностях трубок, что нарушает продвижение сквозь них потока возбужденных атомов.

При сборке трубок в обойму возможны погрешности упаковки: нарушение соосности трубок и наличие сквозных полостей между ними, в результате чего возникает дополнительный, не поддающийся учету, поток частиц.

Серьезным недостатком известного способа является также невозможность реализовать оптимальное расстояние между капиллярами (сравнимое с диаметром капилляра или превышающее его). Очевидно, что диаметр пучка, исходящего из коллиматора, будет расти с расстоянием в связи с наличием разброса по углам у направления движения атомов. В некоторый момент произойдет пересечение путей частиц, двигающихся под углом к оси капилляра. Очевидно также, что с расстоянием убывает плотность пучка.

Если расстояние между капиллярами меньше, чем диаметр капилляра, тогда пересечение пучков произойдет сразу за выходным отверстием капилляра, в области наибольшей плотности пучка приведет к тому, что увеличится число межатомных столкновений, часть столкнувшихся атомов потеряет скорость и образует облако частиц вблизи коллиматора. Наличие облака и дополнительных межмолекулярных столкновений вызовет дополнительное уширение пучка. Кроме того, наличие облака атомов приведет к снижению интенсивности пучка. Интенсивность будет убывать со временем, в то время как плотность облака будет расти за счет частиц, «застрявших» в нем. Такой коллиматор работает не как совокупность капилляров, а как одно отверстие с диаметром, сравнимым с диаметром коллиматора, и далеко не лучшим образом.

Если же расстояния между капиллярами сравнимы или больше диаметра капилляра, то пересечение пучков происходит в области, где плотность пучка мала и атомов гораздо меньше, т.е. образования облака не происходит или плотность облака так мала, что не оказывает заметного действия на ширину пучка.

Известен способ изготовления многокапиллярного коллиматора (см. А.С. СССР №680570), включающий формирование пакета перфорированных металлических пластин. Перфорированные пластины набирают в пакет так, что их отверстия совмещаются и образуют сквозные капилляры. Для фиксации собранных в пакет пластин используют клей, стеклоцемент, легкоплавкий припой или механические фиксаторы.

Основной недостаток известного способа - невозможность получения глубоких, строго вертикальных каналов (капилляров) малого диаметра ввиду невозможности точного совмещения перфорированных пластин. Кроме того осуществление предварительной перфорации металлической пластины лазерным, ультразвуковым, механическим методами, а также вытравливание отверстий химическим путем приводит к значительной деформации краев и внутренней поверхности отверстий или значительному клину и, следовательно, будет заведомо искажать диаграмму направленности потока возбужденных атомов.

Кроме того, при использовании для крепления пластин клеев или цемента вносятся посторонние загрязнения, в то время как исходные изотопы Rb87 и Cs133 являются сверхособочистыми материалами (~99% весовых).

Техническим эффектом, на достижение которого направлено заявляемое изобретение, является достижение возможности изготовления коллиматора с капиллярами требуемого диаметра и количества при оптимальном расстоянии между ними и улучшении вертикальности и качества внутренней поверхности последних.

Этот эффект достигается тем, что в способе изготовления многокапиллярного коллиматора для атомно-лучевой трубки, включающем изготовление перфорированных металлических пластин, сборку их в пакет и последующую фиксацию, изготовление упомянутых пластин проводят методами гальванопластики с использованием оптической литографии при помощи фотошаблона с рисунком капиллярных отверстий и сквозных знаков совмещения, сборку пакета осуществляют совмещением по знакам двух и более пластин с помещенным между ними прозрачным полимером, преимущественно фоторезистом, фиксацию пластин проводят после полимеризации последнего путем сварки каждой пластины с соседними, после чего полимер удаляют и на поверхности сборки, в том числе на внутренней поверхности сквозных отверстий, образующих капилляры, химическим осаждением наращивают слой металла, из которого сформированы пластины.

Упомянутую выше сварку соседних пластин проводят по их торцам внутри знаков совмещения на установке сварки расщепленным электродом.

Последующее удаление полимера осуществляют плазмохимическим травлением.

Финишное наращивание металла проводят до сужения диаметра капилляра до требуемого значения.

Принципиальным отличием и преимуществом предлагаемого способа по сравнению с известными, является получение перфорированных пластин с использованием высокоточных технологических методов - оптической литографии и гальванопластики, применяемых, преимущественно, в микроэлектронике.

Согласно предлагаемому способу перфорированную пластину «выращивают» путем электрохимического осаждения металла на вспомогательной подложке, на которой при помощи фотошаблона с рисунком капиллярных отверстий и знаков совмещения сформирована фоторезистивная маска. Использование электрохимического процесса обеспечивает возможность получения металлического слоя толщиной вплоть до 100 мкм высокого мелко-зернистого структурного совершенства. После удаления маски и подложки получают уже перфорированную пластину достаточной толщины, снабженную сквозными знаками совмещения на ее периферии (диаметр отверстий превышает размер знаков не менее, чем на 10 мкм). Капиллярные отверстия пластины характеризуются хорошей вертикальностью. С учетом высокого разрешения оптической литографии диаметр капилляров, их количество и расстояние друг от друга могут быть любыми, заранее рассчитанными. Исключение операций перфорирования пластин исключает и все связанные с этим процессом дефекты формируемых капилляров.

Для обеспечения необходимой длины капилляров проводят сборку двух или более первоначально сформированных пластин в пакет с последующей их фиксацией. Для этого на единичную (нижнюю) пластину наносят тонкий слой жидкого прозрачного полимера, преимущественно фоторезиста, и совмещают ее по знакам совмещения с аналогичной (верхней). После полимеризации материала (фоторезиста), скрепляющего сборку, нижнюю пластину сваривают с верхней. Удобнее всего эту операцию проводить на установке сварки расщепленным электродом по торцам пластин внутри знаков совмещения (в 5-10 точках в каждом).

Далее удаляют фоторезист в отверстиях полученной мембраны и знаках совмещения. Удаление проводят преимущественно путем плазмохимического травления, обеспечивающего наиболее полное удаление полимера как внутри отверстий, так и между пластинами. При этом удаляются все посторонние загрязнения, наличие которых недопустимо при использовании сверхособочистых изотопов в атомно-лучевой трубке.

При необходимости дальнейшего увеличения толщины сборки перечисленные операции повторяют, возможно совмещение целых сборок. Таким образом можно получить высококачественные мембраны толщиной вплоть до 2 мм.

На заключительном этапе изготовления на поверхность сборки химическим осаждением дополнительно наносят слой металла, из которого выполнены пластины. Изотропный процесс химического осаждения обеспечивает равномерное покрытие, как внешних сторон сборки, так и внутренней поверхности ее отверстий. Покрытие обеспечивает высокое качество поверхности капилляров, не изменяя их вертикальности, а также дополнительно упрочняет сцепление сборки. Использование того же, что и материал пластин, металла исключает возможность возникновения механических и электрохимических напряжений, что наблюдается при совмещении разнородных металлических слоев в процессе эксплуатации атомно-лучевых трубок в жестких температурных режимах.

В случае необходимости уменьшения диаметра капилляров в получаемой мембране для создания оптимальных условий прохождения активных потоков возбужденных атомов (диаметр капилляров выбирают по оптимальному варианту из соотношения толщины мембраны к диаметру отверстий в зависимости от конкретных условий с учетом диаграммы направленности) финишное нанесение металла проводят до сужения капилляров до требуемого значения.

Пример реализации способа

На обезжиренную пластину из нержавеющей стали (вспомогательную подложку) наносят слой фоточувствительного фоторезиста на основе сополимеров бутилметакрилата с эпоксиакрилатом толщиной (50-150) мкм и после сушки облучают через металлизированный фотошаблон с рисунком капиллярных отверстий диаметром 50 мкм и количеством 750 единиц, расположенных в центральной области диаметром 5 мм, а также с рисунком знаков совмещения в виде четырех крестов шириной 40 мкм, расположенных на периферии. Облучение проводят контактным способом при расстоянии от источника облучения до фотошаблона (10-20) см лампой ДРШ-350 в течение (1-4) мин в зависимости от толщины слоя фоторезиста. После проявления в 0,5-процентном растворе едкого калия полученный рельеф сушат при 80°C в течение 30 минут.

Для наращивания слоя никеля, полученную структуру (металлическую пластину с фоторезистивной маской) помещают в гальваническую ванну с электролитом следующего состава:

Сернокислый никель NiS47OH2O - 300 г/л Хлористый натрий NaCl - 20 г/л Борная кислота Н3ВО3 - 30 г/л Глицерин C3H8O3 - 70 г/л

Наращивание ведут в течение (2-4) часов при плотности тока ~1 А/дм2 пока толщина слоя никеля не сравняется с высотой столбиков фоторезиста.

По окончании процесса никелирования вспомогательную подложку отслаивают, а фоторезист удаляют любым подходящим растворителем.

После контрольных операций на обезжиренную заготовку никелевой мембраны на центрифуге наносят сплошной слой фоторезиста типа AZ и накладывают на нее аналогичную, совмещая ее по знакам с рисунком нижней. Контроль совмещаемости проводят в микроскопе на просвет. В результате последующей термообработки при температуре ~80°C фоторезист полимеризуется и склеивает пластины. Далее их сваривают по торцам внутри знаков совмещения расщепленным электродом в 5-8 точках.

Сформированные структуры (мембраны) после сварки промывают в органическом растворителе и подвергают плазмохимическому травлению для удаления оставшегося фоторезиста. При необходимости увеличения толщины мембраны последние операции повторяют.

На финишном этапе изготовления мембрану помещают в ванну для химического наращивания никеля с раствором следующего состава:

Никель сернокислый NiSO4 - 3 г/л Едкий натр NaOH - 7,2 г/л Уксусная кислота CH3COOH - 11 г/л Борная кислота Н3ВО3 - 8 г/л Хлористый аммоний NH4Cl Натрий фосфорноватистокислый NaH2PO2 - 20 г/л

В зависимости от времени наращивания получают покрытие требуемой толщины. Толщина покрытия определяется, в частности, необходимостью уменьшения диаметра капилляров. Химическое никелирование позволяет уменьшить их вплоть до 5-10 мкм.

Сборка окончательно сформированного коллиматора, включающая изготовленные мембраны, может быть использована в атомно-лучевых трубках.

Таким образом, предлагаемый способ изготовления многокапиллярного коллиматора для атомно-лучевой трубки характеризуется высокой эффективностью, воспроизводимостью результатов и широкими техническими возможностями и может с успехом применяться при изготовлении устройств нормирования направленных молекулярных и атомных пучков для различных устройств квантовой электроники.

Похожие патенты RU2502144C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ И СОРТИРОВКИ АТОМНОГО ПУЧКА 1977
  • Крюков Г.М.
SU680570A1
Способ изготовления малогабаритной атомной ячейки с парами щелочного металла 2023
  • Казакин Алексей Николаевич
  • Карасев Платон Александрович
  • Комаревцев Иван Михайлович
  • Кондратьева Анастасия Сергеевна
  • Эннс Яков Борисович
RU2819863C1
СПОСОБ ГЕРМЕТИЗАЦИИ МЭМС УСТРОЙСТВ 2022
  • Дюжев Николай Алексеевич
  • Махиборода Максим Александрович
  • Гусев Евгений Эдуардович
RU2789668C1
СПОСОБ ГЕРМЕТИЗАЦИИ МЭМС УСТРОЙСТВ 2023
  • Гусев Евгений Эдуардович
  • Иванин Павел Сергеевич
  • Фомичёв Михаил Юрьевич
  • Зольников Константин Владимирович
RU2813555C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБКОЙ МИКРОПЕЧАТНОЙ ПЛАТЫ 2012
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Киргизов Сергей Викторович
  • Тихонов Кирилл Семенович
  • Долговых Юрий Геннадьевич
  • Вертянов Денис Васильевич
  • Тимошенков Алексей Сергеевич
  • Титов Андрей Юрьевич
RU2520568C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБКОЙ МИКРОПЕЧАТНОЙ ПЛАТЫ 2014
  • Тимошенков Сергей Петрович
  • Шилов Валерий Федорович
  • Миронов Сергей Геннадьевич
  • Киргизов Сергей Викторович
  • Тихонов Кирилл Семенович
  • Долговых Юрий Геннадьевич
  • Вертянов Денис Васильевич
  • Тимошенков Алексей Сергеевич
  • Титов Андрей Юрьевич
RU2556697C1
Способ изготовления ступенчатого высотного калибровочного эталона и ступенчатый высотный калибровочный эталон 2017
  • Ситников Сергей Васильевич
  • Косолобов Сергей Сергеевич
  • Латышев Александр Васильевич
RU2649058C1
СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПА ДЛЯ НАНОИМПРИНТ ЛИТОГРАФИИ 2011
  • Бокарев Валерий Павлович
  • Горнев Евгений Сергеевич
  • Красников Геннадий Яковлевич
RU2476917C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА С Т-ОБРАЗНЫМ УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ 2010
  • Егоркин Владимир Ильич
  • Шмелев Сергей Сергеевич
  • Трегубова Елена Владимировна
  • Зайцев Алексей Александрович
  • Никифоров Денис Николаевич
RU2421848C1
Источник атомов 2023
  • Гуров Михаил Геннадиевич
RU2811394C1

Реферат патента 2013 года СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОКАПИЛЛЯРНОГО КОЛЛИМАТОРА ДЛЯ АТОМНО-ЛУЧЕВОЙ ТРУБКИ

Изобретение может использоваться в квантовой радиофизике, при изготовлении коллиматоров атомно-лучевых трубок, необходимых для формирования атомных пучков, например, в квантовых стандартах частоты. Способ изготовления многокапиллярного коллиматора для атомно-лучевой трубки включает изготовление перфорированных металлических пластин, сборку их в пакет и последующую фиксацию. Изготовление упомянутых пластин проводят методами гальванопластики. Сборку пакета осуществляют совмещением по знакам двух и более пластин с помещенным между ними прозрачным полимером, преимущественно фоторезистом. Фиксацию пластин проводят после полимеризации последнего путем сварки каждой пластины с соседними, после чего полимер удаляют и на поверхности сборки, в том числе на внутренней поверхности сквозных отверстий, образующих капилляры, химическим осаждением наращивают слой металла. Сварка пластин с соседними может проводиться по их торцам внутри знаков совмещения на установке сварки расщепленным электродом. Удаление полимера осуществляют путем плазмохимического травления. Техническим результатом является возможность изготовления коллиматора с капиллярами требуемого диаметра и количества при оптимальном расстоянии между ними и улучшение их вертикальности и качества внутренней поверхности. 3 з.п. ф-лы.

Формула изобретения RU 2 502 144 C1

1. Способ изготовления многокапиллярного коллиматора для атомно-лучевой трубки, включающий изготовление перфорированных металлических пластин, сборку их в пакет и последующую фиксацию, отличающийся тем, что изготовление упомянутых пластин проводят методами гальванопластики с использованием оптической литографии при помощи фотошаблона с рисунком капиллярных отверстий и сквозных знаков совмещения, сборку пакета осуществляют совмещением по знакам двух и более пластин с помещенным между ними прозрачным полимером, преимущественно фоторезистом, фиксацию пластин проводят после полимеризации последнего путем сварки каждой пластины с соседними, после чего полимер удаляют и на поверхности сборки, в том числе на внутренней поверхности сквозных отверстий, образующих капилляры, химическим осаждением наращивают слой металла, из которого сформированы пластины.

2. Способ по п.1, отличающийся тем, что сварку пластин с соседними проводят по их торцам внутри знаков совмещения на установке сварки расщепленным электродом.

3. Способ по п.1, отличающийся тем, что полимер удаляют путем плазмохимического травления.

4. Способ по п.1, отличающийся тем, что финишное наращивание металла проводят до сужения диаметра капилляра до требуемого значения.

Документы, цитированные в отчете о поиске Патент 2013 года RU2502144C1

АТОМНО-ЛУЧЕВАЯ ТРУБКА НА ПУЧКАХ АТОМОВ ЦЕЗИЯ ИЛИ РУБИДИЯ 2008
  • Плешанов Сергей Анатольевич
  • Харченко Лидия Александровна
RU2371822C1
Способ получения водорастворимого амфотерного полиэлектролита 1979
  • Ярошенко Галина Федосеевна
  • Дятлова Нина Михайловна
  • Тимакова Людмила Михайловна
  • Хавченко Наталья Евгеньевна
  • Дытюк Леонид Терентьевич
  • Самакаев Рафаиль Хакимович
SU876666A1
WO 1992008235 A1, 14.05.1992
Мульда для загрузки сыпучих материалов в плавильную печь 1981
  • Шкляр Манус Соломонович
  • Графман Семен Михайлович
  • Максименко Анатолий Семенович
  • Мерензон Аркадий Аврамович
SU1065670A1

RU 2 502 144 C1

Авторы

Федоров Юрий Иванович

Маслов Андрей Олегович

Молодняков Сергей Петрович

Васильев Эрнст Георгиевич

Тарасова Евгения Николаевна

Савицкая Людмила Николаевна

Даты

2013-12-20Публикация

2012-04-12Подача