СТАЛИ СО СТРУКТУРОЙ ПАКЕТНОГО МАРТЕНСИТА Российский патент 2014 года по МПК C22C38/58 C22C38/50 C22C38/48 

Описание патента на изобретение RU2507297C1

Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, к термически упрочненным сварным конструкциям, крупногабаритным изделиям, а также к сталям для строительных конструкций и деталям нефтяного машиностроения.

Известна низко- и среднеуглеродистая сталь преимущественно с ферритной структурой (от 10 до 80%), у которой требуемые структуру и свойства реализуют за счет выбора компонентов и соотношения между компонентами, при этом сталь содержит, мас.%: углерод 0,05-0,55, кремний 0,01-2,0, хром до 2,0, марганец 0,01-2,00, фосфор до 0,035, сера 0,005-0,2, медь до 1,5, никель до 2,0, молибден до 1,5, ванадий до 0,50, ниобий до 0,1, титан до 0,04, бор до 0,01, алюминий до 0,04, азот до 0,015, висмут до 0,10, кальций до 0,05, свинец до 0,12, теллур до 0,05, неодим до 0,05, селен до 0,5, железо и неизбежные примеси остальное (PCT/JP 2000/000369, 14.09.2000) или (СА 2323952, 14.09.2000).

В известной стали для реализации требуемых структуры и свойств установлены следующие соотношения между компонентами.

Получение от 10 до 80% α-фазы (феррита):

-23С+Si (5-2Si) -4Mn+104S-3Cr-9V+10≥0;

Обеспечение твердости в интервале от 160 до 350 HV:

-3,2С-0,8Mn+5,2S+0,5Cr-120N+2,6Pb+4,1Bi-0,001(α)2+0,13(α)≥3,0;

где α - относительная площадь феррита на шлифе, %, а обозначению каждого химического элемента соответствует его содержание в мас.%.

Недостатком известной стали является неполная возможность повышения конструкционной прочности, а также обеспечения высокой технологичности для изготовления деталей машиностроения и сварных конструкций.

Недостатком известной стали является также неполная возможность закаливаться при охлаждении на спокойном воздухе с температур горячей деформации, по существу, с температур прокатного нагрева или ковки, с образованием микроструктуры низкоуглеродистого мартенсита, обладающего лучшим сочетанием прочности, пластичности и вязкости при температурах минус 50-70°C.

Известна высокопрочная свариваемая сталь, содержащая углерод, хром, марганец, редкоземельные элементы, ванадий, ниобий и железо, при этом сталь дополнительно содержит азот при следующем соотношении компонентов, мас.%: 0,06-0,12 углерод, 1,8-2,5 хром, 1,8-2,5 марганец, 0,01-0,03 редкоземельные элементы, 0,01-0,13 ванадий, 0,02-0,10 ниобий, 0,001-0,25 азот, железо остальное, причем суммарное содержание ванадия и ниобия составляет 0,03-0,15, содержание хрома и марганца удовлетворяет условию 1,2 Cr+Mn = не менее 4 (RU 2009260 C1, 15.03.1994).

Недостатком известной стали является неполная возможность повышения конструкционной прочности, а также обеспечения высокой технологичности для изготовления деталей машиностроения и сварных конструкций.

Выбранные для легирования данной стали ингредиенты и соотношение между ними обеспечивают получение мартенситной структуры, но не гарантируют микроструктуру пакетного мартенсита.

Недостатком известной стали является также неполная возможность закаливаться при охлаждении на спокойном воздухе с температур горячей деформации, по существу, с температур прокатного нагрева или ковки, с образованием микроструктуры низкоуглеродистого мартенсита, обладающего лучшим сочетанием прочности, пластичности и вязкости при температурах минус 50÷70°C.

Известна термоупрочняемая закалкой на воздухе низко- и среднеуглеродистая сталь для улучшенной термообработки, у которой требуемые структура и свойства реализуют за счет выбора компонентов и соотношения между компонентами, при этом сталь содержит, мас.%: 0,10-0,55 углерод, 0,97-2,03 кремний, 0-1,65 хром, 1,14-1,83 марганец, 0,36-0,58 молибден, железо и неизбежные примеси остальное (US 6902631, Jun.7.2005).

Выбранные для легирования данной стали ингредиенты и соотношение между ними обеспечивают получение мартенситной структуры, но не гарантируют микроструктуру пакетно-реечного строения.

Недостатком известной стали является то, что она имеет преимущественно ферритную структуру (от 10 до 80% α-фазы), которая не позволяет реализовать высокие механические свойства, например, не обеспечивает предел прочности на растяжение более 1000 МПа, не обеспечивает требуемые низкотемпературные ударную вязкость, ударную вязкость ЗТВ (зоны термического влияния) и хорошую свариваемость в полевых условиях при температурах минус 50÷70°С.

Недостатком известной стали является также невозможность термического упрочнения при охлаждении на спокойном воздухе с температур прокатного нагрева или ковки с образованием микроструктуры низкоуглеродистого мартенсита, обладающего лучшим сочетанием прочности, пластичности и вязкости при температурах минус 50÷70°С.

Известна конструкционная свариваемая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, титан, церий или кальций, железо остальное, при этом компоненты взяты в следующем соотношении, мас.%: углерод 0,10-0,16, кремний 0,2-0,42, марганец 2,0-2,4, хром 1,8-2,4, никель 1,0-1,5, молибден 0,4-0,6, ванадий 0,08-0,12, титан 0,01-0,06, церий или кальций 0,005-0,15, железо остальное (SU 1790622, 23.01.1993).

Недостатком данной стали является легирование титаном, который упрочняет сталь, главным образом, в результате измельчения аустенитного зерна.

Наиболее близкой к заявляемой, взятой в качестве прототипа, является высокопрочная, свариваемая сталь с повышенной прокаливаемостью, содержащая углерод, кремний, хром, марганец, никель, молибден, ванадий, титан, ниобий, кальций и/или церий, при этом сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,10-0,18, кремний 0,12-0,60, хром 2,0-3,0, марганец 2,0-2,4, никель 1,0-2,0, молибден 0,4-0,6, церий и/или кальций до 0,15, ванадий 0,08-0,12, титан менее 0,01, ниобий 0,05-0,10, железо остальное, при этом после закалки стали с прокатного нагрева или после аустенитизации при температуре 950-1050°C и последующего отпуска при температуре не выше 550°C она имеет структуру мартенсита реечной и глобулярной или пластинчатой морфологии (RU 2314361, 10.01.2007).

Указанный состав стали обеспечивает увеличение прокаливаемости и механических свойств: предела текучести (σ0,2) от 630 до 1130 МПа, предела прочности (σB) от 765 до 1350 МПа, ударной вязкости при 20°C, кДж/м2 от 350 до 600, при этом сталь сваривается без подогрева, имеет структуру пакетного низкоуглеродистого мартенсита и прокаливаемость на спокойном воздухе в сечениях до 150 мм.

Недостатки известной стали: относительно широкий интервал гарантируемых значений механических свойств, невысокие предельные значения прокаливаемости, ударной вязкости, значительное изменение свойств в зоне термического влияния при сварке. Это обусловлено тем, что одни из сильных карбидообразующих элементов (ванадий и титан) в заданных интервалах химического состава упрочняют сталь по двум механизмам. Ванадий упрочняет сталь в результате обеспечения дисперсионного твердения и измельчения зерна (в меньшей степени), титан упрочняет сталь вследствие сохранения мелкого зерна. Для уменьшения интервалов изменения и повышения механических свойств предпочтительно реализовать нескольких механизмов упрочнения с учетом действия каждого элемента. Поэтому вместо титана (или при его минимальном содержании) в сталь вводился легирующий элемент (ниобий), обеспечивающий упрочнение за счет измельчения характерных составляющих структуры и за счет дисперсионного твердения (в меньшей степени). Кроме того, для уменьшения роли зоны термического влияния на свойства сварных изделий содержание углерода должно быть понижено до 0,1% по массе. Уменьшение содержания углерода приводит также к росту вязкости и прокаливаемости, уменьшению зависимости механических свойств от температуры нагрева. Наличие нескольких морфологических типов мартенсита может привести к снижению характеристик механических свойств сварного шва и затрудняет получение требуемой структуры в зоне термического влияния.

Технической задачей, на решение которой направлено изобретение, является разработка свариваемых сталей повышенной вязкости и хладостойкости при сохранении высокой прочности, имеющих структуру пакетного мартенсита.

Сущность технического решения заключается в том, что в низкоуглеродистой мартенситной свариваемой стали, содержащей железо, углерод, хром, марганец, ванадий, ниобий и/или титан, азот, никель, медь, молибден, кальций или редкоземельные элементы, согласно изобретению, содержит компоненты в следующем соотношении, мас.%:

углерод от 0,04 до 0,099 хром до 7,00 марганец от 0,15 до 2,5 никель не более 4 молибден не более 1,0 ванадий не более 0,30 титан не более 0,06 ниобий не более 0,15 азот не более 0,25 медь не более 2,00 редкоземельные элементы или кальций не более 0,15 железо и неизбежные примеси остальное,

сталь имеет пакетно-реечную структуру мартенсита при выполнении соотношения (вес %) Cr/С не менее 20. Введение вышеперечисленных добавок не делает установленное соотношение менее благоприятным. Указанные концентрации и соотношение между компонентами исключают образование двойникового мартенсита или мартенсита с превалирующими высокоугловыми границами. Выход за указанные рамки может приводить к резкому понижению показателей механических свойств в результате формирования структуры мартенсита с морфологией, отличной от пакетно-реечной. Сталь может обеспечить сквозную прокаливаемость:

- при охлаждении на спокойном воздухе с температур горячей деформации, по существу, с температур прокатного нагрева или ковки;

- или после аустенитизации при температуре 900÷1150°C и охлаждения на воздухе, без использования отпуска;

- или после аустенитизации при температуре 900÷1150°c, охлаждения на воздухе, и последующего отпуска.

Состав стали и соотношение между компонентами, необходимые для получения пакетно-реечной структуры мартенсита, являются новым существенным признаком.

Составы сталей представлены в таблице.

Пример. Сталь предложенного состава выплавляли в индукционной печи, разливали на слитки весом 50 кг, ковали в прутки размером 30×30 мм. Температура нагрева под горячую обработку давлением находилась в пределах 1220÷1100°C. После горячей обработки давлением заготовки охлаждали на воздухе. Механические свойства определяли на образцах, вырезанных механическими методами из прутков 30×30 мм. Термическая обработка включала закалку на воздухе и отпуск.

Основные исследовательские методы включали металлографический (Neophot-32) и электронно-микроскопический анализ (ЭМ-125) структуры.

Фазовые превращения изучали дилатометрическим (дифференциальный дилатометр Шевенара), магнитометрическим (модернизированный анизометр Акулова с автоматизированной системой регистрации результатов измерений) и калориметрическим ДСК (дифференциальный сканирующий калориметр STA 449 С Jupiter) методами.

Рентгеновский анализ проводили на приборе ДРОН-3М.

Испытания на одноосное растяжение проводили в соответствии с ГОСТ 1497-84 на машине INSTRON 300 LX.

Ударную вязкость (KCU, KCV, KCT) определяли согласно ГОСТ 9454-78 на маятниковом копре ИО 5003-0.3.

Удельную работу разрушения образцов с трещиной при изгибе и критический коэффициент интенсивности напряжений определяли на универсальной испытательной машине INSTRON 8801.

Микродюрометрические исследования проводили на микротвердомере ПМТ-3.

Твердость определяли на твердомерах Роквелла и Бринелля.

Свариваемость оценивали по склонности к образованию холодных и горячих трещин при сварке специальных технологических проб и по уровню механических свойств металла шва и сварного соединения.

Склонность к образованию горячих трещин проверяли на пробах Холдкрофта (толщина 4 мм) и холодных трещин - на пробах О'Нейля (толщина 12 мм). Пробы изготовлены из пластин, термически упрочненных с прокатного нагрева.

Пробы Холдкрофта проплавляли без подогрева вольфрамовым электродом в среде аргона со скоростью сварки 15 и 30 м/час, сварку проб О'Нейля осуществляли без подогрева в среде СО2 проволокой из стали 10ХГСН2МТ диаметром 1,2 мм. Трещины на пробах отсутствовали.

Прочность сварного соединения определяли по ГОСТ 6996-66 на разрывных образцах типа XXIV (металл шва) и типа XIII (сварное соединение). Образцы вырезаны из пластин, термически упрочненных с прокатного нагрева.

Коррозионные испытания проводили по ГОСТ 9.308-85.

Таблица 1 Содержание ингредиентов Содержание элементов в % по массе С Cr Mn Ni Mo Са и/или Се V Nb Ti N (Cu) Cr/C Структура закаленного сплава 1 0,099 2 2 - - - - - - - 20,2 Пакетный мартенсит 2 0,041 1,7 2,4 1,1 0,24 0,15 - - - - 41,5 3 0,080 2,1 2 - - 0,03 0,21 0,15 0,01 0,25 26,3 4 0,052 5,3 0,15 2,4 1 - 0,3 - - - 101,9 5 0,094 2,15 1 1,1 0,3 0,06 0,12 0,04 0,06 0,03 22,9 6 0,098 7 2,5 - - - - - - 2 Cu 71,4 7 0,043 1,1 0,25 4 - - - - - - 25,6 8 0,04 0,7 0,3 - - - 0,15 - 0,03 - 17,5 Пакетный мартенсит + феррит 9 0,08 1,5 2 0,2 0,25 0,08 - - - 0,05 18,8 Пакетный мартенсит + феррит 10 0,1 1,7 2,5 3,6 0,2 - - 0,05 - - 17 Пакетный + пластинчатый мартенсит 11 Прототип Пакетный + глобулярный мартенсит

Предлагаемое изобретение в выбранных интервалах содержания компонентов, а также соотношений между ингредиентами после закалки с прокатного нагрева, после закалки и отпуска, обеспечивает структуру пакетного мартенсита. Именно это обеспечивает хорошую свариваемость, сохранение комплекса физико-механических свойств в зоне термического влияния.

Предлагаемое легирование низкоуглеродистых мартенситных сталей позволяет реализовать мартенситное превращение на спокойном воздухе с температур горячей деформации, обеспечивает микроструктуру пакетного мартенсита, не требует экологически опасных закалочных сред, обеспечивает свариваемость в термоупрочненном состоянии.

Похожие патенты RU2507297C1

название год авторы номер документа
СТАЛЬ СО СТРУКТУРОЙ НИЗКОУГЛЕРОДИСТОГО МАРТЕНСИТА 2011
  • Клейнер Леонид Михайлович
  • Шацов Александр Аронович
  • Ряпосов Иван Владимирович
  • Ларинин Данил Михайлович
  • Закирова Мария Германовна
RU2462532C1
ВЫСОКОПРОЧНАЯ, СВАРИВАЕМАЯ СТАЛЬ С ПОВЫШЕННОЙ ПРОКАЛИВАЕМОСТЬЮ 2005
  • Клейнер Леонид Михайлович
  • Толчина Ираида Владимировна
  • Шацов Александр Аронович
RU2314361C2
Способ получения низкоуглеродистой мартенситной стали 2020
  • Лаптев Сергей Константинович
  • Шацов Александр Аронович
  • Гребеньков Сергей Константинович
  • Жаренников Алексей Владимирович
RU2760140C1
ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ СТАЛЬ 1992
  • Клейнер Леонид Михайлович
  • Толчина Ираида Владимировна
  • Пиликина Людмила Дмитриевна
  • Молганов Александр Михайлович
  • Архипов Валентин Михайлович
RU2009260C1
ТЕПЛОСТОЙКАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ 1995
  • Клейнер Леонид Михайлович
  • Пиликина Людмила Дмитриевна
  • Сулацков Виктор Иванович
  • Сафьянов Анатолий Васильевич
  • Сергеев Иван Иванович
  • Игнатьев Валерий Валерьевич
  • Лапин Леонид Игнатьевич
  • Карпенко Николай Петрович
  • Голодягин Александр Сергеевич
  • Власов Лев Анатольевич
  • Толчина Ираида Владимировна
RU2081199C1
НИЗКОУГЛЕРОДИСТАЯ ЛЕГИРОВАННАЯ СТАЛЬ 2011
  • Симонов Юрий Николаевич
  • Панов Дмитрий Олегович
  • Симонов Михаил Юрьевич
  • Касаткин Алексей Валерьевич
  • Подузов Денис Павлович
RU2477333C1
СТАЛЬ И ЕЕ ВАРИАНТЫ 1995
  • Клейнер Леонид Михайлович
  • Пиликина Людмила Дмитриевна
  • Сулацков Виктор Иванович
  • Сударенко Владимир Сергеевич
  • Толчина Ираида Владимировна
  • Трегубов Лев Владимирович
  • Федченко Юрий Алексеевич
  • Власов Лев Анатольевич
RU2094519C1
Листовой прокат, изготовленный из высокопрочной стали 2019
  • Орыщенко Алексей Сергеевич
  • Голосиенко Сергей Анатольевич
  • Хлусова Елена Игоревна
  • Сыч Ольга Васильевна
  • Коротовская Светлана Владимировна
  • Рябов Вячеслав Викторович
  • Шумилов Евгений Алексеевич
  • Яшина Екатерина Александровна
  • Владимиров Александр Дмитриевич
  • Попков Антон Геннадьевич
  • Хадеев Григорий Евгеньевич
  • Гелевер Дмитрий Георгиевич
RU2726056C1
Высокопрочная свариваемая сталь 1983
  • Абрамов Олег Владимирович
  • Коноплева Елена Валериановна
  • Энтин Рувим Иосифович
  • Коган Лидия Израилевна
  • Клейнер Леонид Михайлович
  • Косматенко Иван Егорович
  • Некрасов Валерий Константинович
  • Паршин Валерий Михайлович
  • Уманец Валерий Иванович
  • Пичурин Игорь Ильич
  • Янер Виктор Рохузович
  • Болотов Александр Семенович
  • Мазель Александр Григорьевич
  • Баязитов Вадим Муратович
SU1145046A1
Сталь 1990
  • Литвиненко Денис Ануфриевич
  • Никитин Валентин Николаевич
  • Эфрон Леонид Иосифович
  • Лазько Валентина Григорьевна
  • Маслюк Владимир Михайлович
  • Басин Феликс Иосифович
  • Дружинин Юрий Васильевич
  • Леонов Алексей Данилович
  • Рябова Нелли Георгиевна
  • Титиевский Ефим Маркович
  • Миходуй Леонид Иванович
  • Доскин Николай Юрьевич
SU1749307A1

Реферат патента 2014 года СТАЛИ СО СТРУКТУРОЙ ПАКЕТНОГО МАРТЕНСИТА

Изобретение относится к области металлургии, а именно к высокопрочным низкоуглеродистым мартенситным свариваемым сталям, закаливающимся на воздухе, используемым для изготовления термически упрочненных сварных конструкций, крупногабаритных изделий, а также строительных конструкций и деталей нефтяного машиностроения. Сталь содержит, в мас.%: углерод от 0,04 до 0,099, хром до 7,00, марганец от 0,15 до 2,5, никель не более 4, молибден не более 1,0, ванадий не более 0,30, титан не более 0,06 и/или ниобий не более 0,15, азот не более 0,25, медь не более 2,00, редкоземельные элементы или кальций не более 0,15, железо и неизбежные примеси - остальное. Сталь имеет пакетно-реечную структуру мартенсита при выполнении соотношения, мас.%: Сr/С не менее 20. Сталь обладает повышенными значениями характеристик прочности, вязкости и свариваемости. 1 табл.

Формула изобретения RU 2 507 297 C1

Низкоуглеродистая мартенситная свариваемая сталь, содержащая железо, углерод, хром, марганец, ванадий, ниобий и/или титан, азот, никель, медь, молибден, кальций или редкоземельные элементы, отличающаяся тем, что она содержит компоненты в следующем соотношении, мас.%:
углерод от 0,04 до 0,099 хром до 7,00 марганец от 0,15 до 2,5 никель не более 4 молибден не более 1,0 ванадий не более 0,30 титан не более 0,06 ниобий не более 0,15 азот не более 0,25 медь не более 2,00 редкоземельные элементы или кальций не более 0,15 железо и неизбежные примеси остальное,


причем сталь имеет пакетно-реечную структуру мартенсита при выполнении соотношения, мас.%: Сr/С не менее 20.

Документы, цитированные в отчете о поиске Патент 2014 года RU2507297C1

RU 2010126855 A, 10.01.2012
ВЫСОКОПРОЧНАЯ, СВАРИВАЕМАЯ СТАЛЬ С ПОВЫШЕННОЙ ПРОКАЛИВАЕМОСТЬЮ 2005
  • Клейнер Леонид Михайлович
  • Толчина Ираида Владимировна
  • Шацов Александр Аронович
RU2314361C2
СПОСОБ ПОЛУЧЕНИЯ СВЕРХВЫСОКОПРОЧНЫХ СВАРИВАЕМЫХ СТАЛЕЙ 1998
  • Лутон Майкл Дж.
  • Коо Джайоунг
  • Бангару Нарасимха-Рао В.
  • Питерсен Клиффорд В.
  • Тамехиро Хироси
  • Асахи Хитоси
  • Хара Такуя
  • Сугияма Масааки
RU2210603C2
МАРТЕНСИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ УЛУЧШЕННОЙ ОБРАБАТЫВАЕМОСТИ 1994
  • Оливье Блеттон[Fr]
  • Жак Бэйоль[Fr]
  • Паскаль Террьен[Fr]
RU2080410C1
Сталь 1980
  • Иванов П.И.
  • Бармин Л.Н.
  • Кузнецов А.И.
  • Гусев Б.К.
  • Кузнецов В.В.
  • Жданович К.К.
  • Злобин П.Д.
  • Маслов Л.Н.
  • Бойченко К.В.
  • Мураховский И.М.
  • Угарова Н.А.
  • Пономарев Н.А.
  • Лойферман М.А.
SU826645A1
Состав стали 1981
  • Энтин Рувим Иосифович
  • Коган Лидия Израилевна
  • Матрохина Эвелина Федоровна
  • Клейнер Леонид Михайлович
  • Мельников Николай Прокофьевич
  • Гладштейн Леонид Исаакович
  • Бобылева Лидия Александровна
  • Кузьмин Юрий Павлович
  • Попов Эдуард Федорович
  • Павлов Владимир Петрович
  • Гутнов Русланбек Батырбекович
  • Сокол Исаак Яковлевич
SU988502A1
EP 974677 A1, 26.01.2000
Рычажный механизм с гибкими звеньями 1981
  • Архипов Юрий Александрович
  • Валовский Владимир Михайлович
  • Максутов Рафхат Ахметович
SU1017862A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1

RU 2 507 297 C1

Авторы

Клейнер Леонид Михайлович

Шацов Александр Аронович

Ларинин Данил Михайлович

Даты

2014-02-20Публикация

2012-10-05Подача