Способ получения низкоуглеродистой мартенситной стали Российский патент 2021 года по МПК C21D1/78 C22C38/58 C21D8/00 

Описание патента на изобретение RU2760140C1

Изобретение относится к области металлургии, в частности, к получению высокопрочных свариваемых конструкционных сталей. Может использоваться при получении стали для приборостроения, машиностроения, добывающей, перерабатывающей, кабельной и других отраслей промышленности.

Известна сталь со структурой низкоуглеродистого мартенсита по патенту РФ на изобретение №2462532, С22С 38/58, 2012. Сталь содержит, мас.%: углерод 0,182-0,272, хром 1,2-4,0, никель 0,3-4,0, марганец 1,0-3,0, молибден не более 3,0, ванадий не более 0,3, медь не более 2,5, титан не более 0,1, ниобий не более 0,15, кремний не более 0,6, азот 0,001-0,25, кальций не более 0,15, церий не более - 0,15, РЗМ не более 0,03, железо остальное. После закалки с деформационного нагрева или после аустенитизации с охлаждением на спокойном воздухе и последующего отпуска она имеет реечно-глобулярную мартенситную структуру. Недостатком являются невысокие физико-механические характеристики, в частности, показатель ударной вязкости.

Известна высокопрочная, свариваемая сталь с повышенной прокаливаемостью по патенту РФ на изобретение №2314361, 2008. Сталь содержит, мас.%: углерод 0,10-0,18, кремний 0,12-0,60, хром 2,0-3,0, марганец 2,0-2,4, никель 1,0-2,0, молибден 0,4-0,6, церий и/или кальций до 0,15, ванадий 0,08-0,12, титан менее 0,01, ниобий 0,05-0,10, железо остальное. Сталь после закалки с прокатного нагрева или после аустенитизации при температуре 950-1050°С с ускоренным охлаждением и последующего отпуска при температуре не выше 550°С она имеет структуру пакетного мартенсита. Недостатки данной стали заключаются в малом интервале гарантируемых значений механических свойств, в невысоких предельных значениях прокаливаемости, ударной вязкости, что может вызвать значительное изменение свойств в зоне термического влияния при сварке. 

Известна сталь со структурой пакетного мартенсита по патенту РФ на изобретение №2507297, С22С 38/58, 2014. Сталь содержит, в мас.%: углерод от 0,04 до 0,099, хром до 7,00, марганец от 0,15 до 2,5, никель не более 4, молибден не более 1,0, ванадий не более 0,30, титан не более 0,06 и/или ниобий не более 0,15, азот не более 0,25, медь не более 2,00, редкоземельные элементы или кальций не более 0,15, железо и неизбежные примеси - остальное. Сталь имеет пакетно-реечную структуру мартенсита при выполнении соотношения, мас.%: Сr/С не менее 20. В закаленном состоянии или после низкотемпературного отпуска структура стали почти полностью состоит из пакетного мартенсита прочностью до 1200 МПа, и обладает высокой вязкостью. Недостатком является сохранение пакетной структуры лишь в узких интервалах варьирования концентраций углерода и легирующих элементов. Сталь обладает сравнительно невысокими значениями сочетаний прочности, ударной вязкости и хладостойкости.

В качестве ближайшего аналога заявляемому техническому решению выбран способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали по патенту РФ на изобретение №2635205, С21D 9/08, 2017. Трубу изготавливают из коррозионно-стойкой стали мартенситного класса, содержащей, мас.%: углерод 0,12-0,17, кремний 0,15-0,50, марганец 0,30-0,90, хром 12,00-14,00, никель 1,80-2,20, медь не более 0,25, алюминий 0,02-0,05, сера не более 0,010, фосфор не более 0,020, азот не более 0,020, железо - остальное. Труба подвергнута закалке от 920 до 1020°С, второй закалке из межкритического интервала температур от 700 до 830°С и отпуску в интервале температур от 560 до 690°С. Недостатком являются недостаточно высокие механические свойства для использования трубы при низких температурах в северных районах.

Техническим результатом заявляемого изобретения является повышение механических свойств низкоуглеродистой мартенситной стали при обеспечении ее высокой хладостойкости.

Технический результат достигается за счет того, что в способе получения низкоуглеродистой мартенситной стали, включающем прокатный нагрев с охлаждением на воздухе и последующую двукратную закалку с отпуском, из которых вторую закалку проводят при температуре, соответствующей температуре межкритического интервала температур, отличающийся тем, что используют сталь с содержанием углерода 0,12-0,27 масс.%, в качестве первой закалки после прокатного нагрева проводят полную закалку на воздухе или в жидких охлаждающих средах от температуры 950°С, затем проводят средне или высокотемпературный отпуск и вторую закалку из межкритического интервала температур 800-810°С.

Технический результат обеспечивается получением стали с двухфазной мартенситной структурой, за счет которой сталь обладает требуемыми свойствами. Получение структуры стали мартенсит-мартенситного типа достигают содержанием углерода в стали 0,12-0,27 масс.% в сочетании с особой технологией термообработки. Содержание углерода до 0,1% масс.%, обеспечивает улучшение структуры стали за счет образования пакетного мартенсита. Однако, высокие механические свойства стали в сочетании с хладостойкостью обеспечиваются за счет образования мартенсит – мартенситной структуры при содержании углерода 0,12-0,27 масс.%. Причем при данной структуре стали с увеличением содержания углерода улучшаются значения механических характеристик. Наименьшее содержание углерода – 0,12 масс.%, определено экспериментально, исходя из реализации особого типа структурной наследственности, которая проявляется в сохранении морфологии мартенсита при нагреве до Ас3. При реализации такой наследственности комплекс механических свойств заявляемой стали выше, чем у сталей-аналогов. Максимальное содержание углерода - 0,27 масс.%, определено из условия образования мартенсит–мартенситной структуры с преимущественно пакетным мартенситом после закалки, т.к. при появлении в структуре стали пластинчатой составляющей резко ухудшаются свойства стали, влияющие на надежность. При дальнейшем увеличении в твердом растворе углерода, снижается значение Мs, увеличивается доля пластинчатой составляющей, уменьшается инкубационный период перлитного и бейнитного превращений. Где Ms (Мн) и Мf (Mк) – точки начала и конца мартенситного превращения. Лучшие свойства низкоуглеродистой мартенситной стали с содержанием углерода 0,12-0,27 масс.% обеспечивает термообработка после прокатного нагрева, включающая полную закалку при температурах выше Ас3, средне- или высокотемпературный отпуск и закалку из межкритического интервала температур (МКИ). С целью конструирования карбидной системы отпуск проводится перед закалкой из МКИ, это позволяет создать заданное, близкое к упорядоченному, распределение дислокаций, т.к. количество и заданное распределение дефектов кристаллического строения во многом определяет свойства получаемой стали. Проведение в качестве завершающей операции термообработки закалки из МКИ между критическими температурами Ас1 и Ас3 способствует образованию мартенсит-мартенситной структуры материала. Данная структура характеризуется присутствием двух α-фаз с морфологией мартенсита: «родительской», сохранившей морфологию поле нагрева в МКИ и «свежей», превратившейся из аустенита при охлаждении из межфазной области. Оптимальные температуры полной закалки, отпуска и закалки из МКИ определены экспериментально, исходя из требуемого сочетания механических свойств стали и необходимого предела хладостойкости. Высокие значения ударной вязкости, характеристик прочности и хладостойкости после указанной последовательности операций термообработки достигаются за счет образования мартенсит-мартенситной структуры низкоуглеродистой мартенситной стали. Высокая ударная вязкость при температуре минус 40°С подтверждается большой долей ямочной составляющей в изломах. Заявляемая сталь с указанным содержанием углерода склонна к структурной наследственности. Термическое воздействие, направленное на образование двухфазной мартенситной структуры, эффективно для низкоуглеродистых мартенситных сталей, склонных к структурной наследственности, легированных сильными карбидообразующими элементами из-за образования специальных карбидов, которые мало растворяются в аустените, задерживают рост зерна аустенита и способствуют сохранению морфологии альфа фазы до Ас3.

Способ получения низкоуглеродистой мартенситной стали осуществляют следующим образом.

Используют низкоуглеродистую сталь с содержанием компонентов, указанным в таблице:

Углерод 0,12-0,27; Медь до 0,8; Ванадий до 0,15; Кремний 0,1-0,5; Алюминий до 0,005-0,05; Ниобий до 0,15; Марганец 1,8-2,6; Титан до 0,02; Церий до 0,06; Хром 2,1-2,8; Кальций до 0,06; Железо остальное. Никель 1,0-1,6; Цирконий до 0,1;

Сталь предложенного состава выплавляют в индукционной печи, разливают на слитки и подвергают горячей прокатке в круг. Температуру нагрева под прокатку выдерживают в пределах 1220÷1100°C. Температура завершения прокатки 900°С. После горячей обработки давлением заготовки охлаждают на воздухе. Механические свойства заготовок определяют на образцах, вырезанных механическим способом. Далее проводят термическую обработку, включающую в качестве основных операций закалку на воздухе с последующим отпуском и закалку на воздухе из межкритического интервала температур при следующих температурных режимах:

- закалка при температуре 950-980°С на спокойном воздухе или в жидких охлаждающих средах;

- отпуск при температуре 450-660°С (средне- или высокотемпературный) с последующим охлаждением на спокойном воздухе;

- закалка из межкритического интервала температур в интервале значений 800-810°С.

После обеих указанных закалок проводят охлаждение на воздухе, возможно так же охлаждение в воде, в масле или в специальных закалочных жидкостях. Температуру отпуска выбирают в зависимости от состава стали. Увеличение содержания углерода и присутствие сильных карбидообразователей вызывает переход от среднетемпературного отпуска к высокотемпературному.

Пример. Использовали отливки сталей марок 12Х2Г2НМФБ, 15Х2Г2НМФБ, 27Х2Г2НМФБ следующего химического состава:

Содержание элемента, масс. % Марка стали C Si Mn Cr Ni Мо Nb V Cu S P 12Х2Г2НМФБ 0,12 0.40 2.24 2.39 1.38 0.45 0.070 0.1 - 0.007 0,015 15Х2Г2НМФБ 0,15 0,27 2.07 2,10 1,23 0,42 0,063 0,09 - 0,01 0,02 27Х2Г2НМФБ 0,27 0.43 2.45 2.37 1.48 0.53 0.14 0.14 0.19 0.008 0.016

Отливки сталей обозначенных 12Х2Г2НМФБ, 15Х2Г2НМФБ, 27Х2Г2НМФБ деформировали при температуре 1250-900°С с охлаждением на воздухе. Из полученных после деформирования прутков механическими методами изготавливали образцы с их последующей термообработкой по схеме:

Закалку прутков стали 12Х2Г2НМФБ проводили от температуры 980°С с охлаждением на спокойном воздухе, стали 15Х2Г2НМФБ – от температуры 950°С с охлаждением на спокойном воздухе, стали 27Х2Г2НМФБ – от температуры 950°С с охлаждением на спокойном воздухе. Далее проводили отпуск при температурах для стали 12Х2Г2НМФБ – 660°С , для стали 15Х2Г2НМФБ – 450°С, для стали 27Х2Г2НМФБ – 660°С с последующим охлаждением на спокойном воздухе. Проводили закалку из межкритического интервала температур для стали 12Х2Г2НМФБ при температуре 810°С, для стали 15Х2Г2НМФБ при температуре 800°С, для стали 27Х2Г2НМФБ при температуре 800°С. Полученные значения механических свойств представлены в таблице

Сталь σВ, МПа σ0,2, МПа δ,% Ψ, % КСV+20, МДж/м2 КСV-40, МДж/м2 КСV-60, МДж/м2 КСV-50, МДж/м2 12Х2Г3МФТ-1 1440 1190 14 55 1.28 0,98 0.36 - 12Х2Г3МФТ-2 1390 1120 14 55 0,82 1,18 0.46 - 12Х2Г3МФТ-3 1450 1190 13 51 0,70 0,45 0.26 - 15Х2Г3МФБ-1 1460 1190 12 62 1,3 0,9 0,3 0,6 15Х2Г3МФБ-2 1320 1190 13 63 1,2 0,6 0,2 0,78 15Х2Г3МФБ-3 1310 1010 16 62 0,7 0,45 0,3 - 27Х2Г3МФБ-1 1800 1190 12 59 1,5 1,1 0,2 - 27Х2Г3МФБ-2 1650 1200 9 46 1,1 0,65 0,2 - 27Х2Г3МФБ-3 1650 1220 15 62 0,35 0,2 0,2 -

Обозначения:

1 – закалка полная, высокотемпературный отпуск, закалка из МКИ;

2 –закалка полная, среднетемпературный отпуск, закалка из МКИ;

3 – закалка полная, закалка 950°С, низкий отпуск.

Анализ представленных данных показывает, что при температурах до «-40°С» значение ударной вязкости образцов всех сталей, подвергнутых полной закалке, отпуску и закалке из МКИ значительно превышает ударную вязкость образцов, указанных в таблице под номером 3, прошедших иную термообработку, которую применяли ранее. Фрактограммы, полученные испытанием на ударный изгиб образцов с V – образным надрезом, подтверждают хорошую хладостойкость, поскольку при температуре испытаний «- 40°С» сохраняется высокая доля ямочной составляющей излома. Как видно из таблицы, лучшее сочетание характеристик прочности и надежности, так же как хладостойкости, получено после режима, включающего полную закалку, высоко- или среднетемпературный отпуск и закалку из МКИ. Полученные низкоуглеродистые мартенситные стали являются свариваемыми сталями с повышенными значениями характеристик прочности, вязкости и хладостойкости. Использование данных сталей позволит обеспечить высокий комплекс механических свойств в деталях и элементах конструкций.

Таким образом, заявляемое изобретение позволяет повысить механические свойства низкоуглеродистой мартенситной стали при обеспечении ее высокой хладостойкости.

Похожие патенты RU2760140C1

название год авторы номер документа
СТАЛИ СО СТРУКТУРОЙ ПАКЕТНОГО МАРТЕНСИТА 2012
  • Клейнер Леонид Михайлович
  • Шацов Александр Аронович
  • Ларинин Данил Михайлович
RU2507297C1
Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали 2016
  • Пышминцев Игорь Юрьевич
  • Битюков Сергей Михайлович
  • Лаев Константин Анатольевич
  • Гагаринов Вячеслав Алексеевич
  • Тихонцева Надежда Тахировна
  • Засельский Евгений Михайлович
  • Жукова Светлана Юльевна
  • Мануйлова Ирина Ивановна
  • Софрыгина Ольга Андреевна
  • Ярулин Евгений Сергеевич
  • Ковалькова Елена Олеговна
RU2635205C2
ВЫСОКОПРОЧНАЯ, СВАРИВАЕМАЯ СТАЛЬ С ПОВЫШЕННОЙ ПРОКАЛИВАЕМОСТЬЮ 2005
  • Клейнер Леонид Михайлович
  • Толчина Ираида Владимировна
  • Шацов Александр Аронович
RU2314361C2
НИЗКОУГЛЕРОДИСТАЯ ЛЕГИРОВАННАЯ СТАЛЬ 2011
  • Симонов Юрий Николаевич
  • Панов Дмитрий Олегович
  • Симонов Михаил Юрьевич
  • Касаткин Алексей Валерьевич
  • Подузов Денис Павлович
RU2477333C1
Бесшовная труба нефтяного сортамента из высокопрочной коррозионно-стойкой стали мартенситного класса и способ ее получения 2021
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Нурмухаметова Марианна Рашидовна
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Маковецкий Александр Николаевич
RU2807645C2
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ КРИОГЕННОЙ КОНСТРУКЦИОННОЙ СТАЛИ 2019
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
  • Алексеев Даниил Юрьевич
  • Никитенко Ольга Александровна
  • Денисов Сергей Владимирович
  • Брайчев Евгений Викторович
  • Стеканов Павел Александрович
RU2703008C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВКИ ИЗ ВЫСОКОПРОЧНОЙ ИЗНОСОСТОЙКОЙ СТАЛИ (ВАРИАНТЫ) 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
RU2750299C2
ВЫСОКОАЗОТИСТАЯ МАРТЕНСИТНАЯ НИКЕЛЕВАЯ СТАЛЬ 2013
  • Блинов Виктор Михайлович
  • Банных Олег Александрович
  • Костина Мария Владимировна
  • Андреев Чавдар
  • Лукин Евгений Игоревич
  • Блинов Евгений Викторович
  • Ригина Людмила Георгиевна
RU2516187C1
Бесшовная высокопрочная труба из стали мартенситного класса для обсадных колонн и способ ее производства 2021
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Чикалов Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Неклюдов Илья Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2787205C2
БЕСШОВНАЯ ВЫСОКОПРОЧНАЯ ТРУБА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА ДЛЯ ОБСАДНЫХ КОЛОНН И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2022
  • Пумпянский Дмитрий Александрович
  • Чикалов Сергей Геннадьевич
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Буняшин Михаил Васильевич
  • Ульянов Андрей Георгиевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Лоханов Дмитрий Валерьевич
  • Благовещенский Сергей Иванович
  • Никляев Андрей Викторович
  • Пышминцев Игорь Юрьевич
  • Выдрин Александр Владимирович
  • Черных Иван Николаевич
  • Корсаков Андрей Александрович
RU2798642C1

Реферат патента 2021 года Способ получения низкоуглеродистой мартенситной стали

Изобретение относится к области металлургии, а именно к получению заготовок из низкоуглеродистой мартенситной стали, содержащей 0,12-0,27 мас.% углерода. Заготовку выплавляют из стали, в состав компонентов которой включены 0,1-0,5 мас.% кремния, 1,8-2,6 мас.% марганца, 2,1-2,8 мас.% хрома, 1,0-1,6 мас.% никеля, до 0,15 мас.% ванадия и до 0,15 мас.% ниобия. Осуществляют прокатный нагрев заготовки, последующую двукратную закалку и отпуск. В качестве первой закалки после прокатного нагрева проводят полную закалку от температуры 950°С, после первой закалки проводят средне- или высокотемпературный отпуск, а вторую закалку проводят из межкритического интервала температур 800-810°С. Повышаются механические свойства низкоуглеродистой мартенситной стали при обеспечении ее высокой хладостойкости. 3 табл., 1 пр.

Формула изобретения RU 2 760 140 C1

Способ получения заготовки из низкоуглеродистой мартенситной стали, содержащей 0,12–0,27 мас.% углерода, включающий выплавку заготовки, прокатный нагрев заготовки, последующую двукратную закалку и отпуск, отличающийся тем, что выплавляют заготовку из низкоуглеродистой мартенситной стали, в состав компонентов которой включены 0,1-0,5 мас.% кремния, 1,8-2,6 мас.% марганца, 2,1-2,8 мас.% хрома, 1,0-1,6 мас.% никеля, до 0,15 мас.% ванадия, до 0,15 мас.% ниобия, в качестве первой закалки после прокатного нагрева проводят полную закалку от температуры 950°С, после первой закалки проводят средне- или высокотемпературный отпуск, а вторую закалку проводят из межкритического интервала температур 800-810°С.

Документы, цитированные в отчете о поиске Патент 2021 года RU2760140C1

Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали 2016
  • Пышминцев Игорь Юрьевич
  • Битюков Сергей Михайлович
  • Лаев Константин Анатольевич
  • Гагаринов Вячеслав Алексеевич
  • Тихонцева Надежда Тахировна
  • Засельский Евгений Михайлович
  • Жукова Светлана Юльевна
  • Мануйлова Ирина Ивановна
  • Софрыгина Ольга Андреевна
  • Ярулин Евгений Сергеевич
  • Ковалькова Елена Олеговна
RU2635205C2
СПОСОБ ПРОИЗВОДСТВА СФЕРОИДИЗОВАННОГО СОРТОВОГО ПРОКАТА ИЗ БОРСОДЕРЖАЩЕЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ОБЪЕМНОЙ ШТАМПОВКИ ВЫСОКОПРОЧНЫХ КРЕПЕЖНЫХ ДЕТАЛЕЙ 2003
  • Бобылев М.В.
  • Закиров Д.М.
  • Кулапов А.Н.
  • Степанов Н.В.
  • Антонова З.А.
  • Майстренко В.В.
  • Пешев А.Д.
  • Ламухин А.М.
  • Водовозова Г.С.
  • Зиборов А.В.
  • Луценко А.Н.
  • Ронжина Л.Н.
RU2238335C1
Способ комбинированной обработкиСТАли 1979
  • Панфилова Людмила Михайловна
  • Сырейщикова Вера Ивановна
  • Срогович Марина Исааковна
  • Плахотин Всеволод Сергеевич
  • Уральский Виктор Иванович
SU834160A1
WO 2016208571 A1, 29.12.2016
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1

RU 2 760 140 C1

Авторы

Лаптев Сергей Константинович

Шацов Александр Аронович

Гребеньков Сергей Константинович

Жаренников Алексей Владимирович

Даты

2021-11-22Публикация

2020-12-10Подача