Изобретение относится к способам формирования покрытий на титан-алюминиевых сплавах с высокой удельной поверхностью и может быть использовано для создания изделий из сплавов для устройств различной функциональности.
Известны способы получения покрытий на плоских деталях из алюминия и его сплавов анодным оксидированием металла в электролитах, позволяющих сформировать пористые покрытия с толщиной и диаметрами пор, задаваемыми условиями анодирования [1. Thompson G.E. Porous anodic alumina: fabrication, characterization and applications // Thin Solid Films. 1997, Vol.297, P.192-201]. Также известны способы формирования нанотрубчатых оксидных покрытий титана анодированием плоских деталей из титана во фторсодержащих электролитах [2. Beranek R, Hildebrand Н., Schmuki P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes // Electrochemical and Solid-State Letters. 2003. V.6. No 3. P.В12-В14].
Известен способ создания изделий, включающих спекание деталей из порошка титана, нанесение оксида микродуговым оксидированием в соответствующих электролитах, в результате на поверхности изделия создается биологически активное покрытие, содержащее поры микронных размеров. [3. Патент CN №101310897 AC25D 11/26. Titanium material with biological activity and preparation method thereof]. Предлагаемый способ не обеспечивает заметного увеличения удельной поверхности изделия и достаточно трудоемок.
Наиболее близким к предлагаемому техническому решению является способ формирования оксида на плоских деталях из сплава титан-алюминий [4. Hiroaki Tsuchiya, Steffen Berger, Jan M. Macak, Andrei Ghicov, Patrik Schmuki. Self-organized porous and tubular oxide layers on TiAl alloys // Electrochemistry Communications. 9 (2007), P.2397-2402]. В предлагаемом способе пористый оксид получают анодным оксидированием плоских деталей сплавов Ti-Al во фторсодержащих водных растворах серной кислоты. Перед анодированием образцы полируют, промывают с использование ультразвука, высушивают в потоке азота. При анодном оксидировании формируется пористый или трубчатый оксид, толщина и размеры пор/трубок которого зависят от состава сплава и параметров процесса анодирования.
В результате анодирования плоских деталей сплавов удельная поверхность покрытия увеличивается в 100-200 раз в зависимости от толщины оксида.
Задачей изобретения является увеличение удельной поверхности изделий из сплава спеченного порошка титан-алюминий.
Поставленная задача достигается тем, что детали, изготовленные из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывают в этаноле, высушивают, промывают в дистиллированной воде, высушивают при температуре 80-90°С и анодируют в 10% растворе серной кислоты H2SO4 с добавкой 0.15% фтористоводородной кислоты HF при постоянной плотности тока.
Предлагаемое техническое решение поясняется примером.
Деталь из порошка сплава титан-алюминий с размерами гранул 1-10 мкм изготавливают спеканием при температуре 1100-1200°С. Удельная поверхность объемно-пористого тела из спеченного порошка сплава титан-алюминий составляет ~1.5·103 см2/г. Детали промывают в этаноле в течение 5 мин. Затем промывают в дистиллированной воде и высушивают на воздухе при температуре 80-90°C. Анодирование проводят в 10% растворе H2SO4 с добавкой 0.15% HF при постоянной плотности тока j=0.2 мА/см2. Детали тщательно промывают и высушивают.
На фиг.1 приведены изображения поверхности деталей, изготовленных из спеченного порошка сплава титан-алюминий, полученные с помощью сканирующего электронного микроскопа JSM-6480LV (JEOL) до и после анодирования. На снимках видно, что внешняя поверхность после нанесения оксида значительно более развитая, чем у металла. Диаметры пор оксида составляют 40-60 нм.
Удельная поверхность детали после нанесения нанопористого оксида толщиной 500 нм увеличивается до 2.5·104 см2/г.
Такие изделия могут найти применение там, где необходима большая удельная поверхность детали при минимальном объеме или массе тела, например, в каталитических системах.
Источники информации
1. Thompson G.E. Porous anodic alumina: fabrication, characterization and applications // Thin Solid Films. 1997, Vol.297, P.192-201.
2. Beranek R, Hildebrand H., Schmuki P. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes // Electrochemical and Solid-State Letters. 2003. V.6. No 3. P.B12-B14.
3. Патент CN №101310897 A, C25D 11/26. Titanium material with biological activity and preparation method thereof, опубл.26.11.2008.
4. Hiroaki Tsuchiya, Steffen Berger, Jan M. Macak, Andrei Ghicov, Patrik Schmuki. Self-organized porous and tubular oxide layers on TiAl alloys // Electrochemistry Communications. 9 (2007), P.2397-2402.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОРМИРОВАНИЯ КРИСТАЛЛИЧЕСКОГО НАНОПОРИСТОГО ОКСИДА НА СПЛАВЕ ТИТАН-АЛЮМИНИЙ | 2015 |
|
RU2601904C2 |
Способ формирования нанопористого оксида на поверхности имплантата из порошкового ниобия | 2015 |
|
RU2633143C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ОСНОВЕ НАНОПОРИСТОГО ДИОКСИДА ТИТАНА | 2016 |
|
RU2631780C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ | 2017 |
|
RU2655354C1 |
Способ формирования структурированной поверхности на алюминии и его сплавах | 2016 |
|
RU2640895C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА | 2012 |
|
RU2495963C1 |
ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ПОЛУЧЕНИЯ ПОРИСТЫХ АНОДНЫХ ОКСИДОВ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ В IN-SITU ЭКСПЕРИМЕНТАХ ПО МАЛОУГЛОВОМУ РАССЕЯНИЮ ИЗЛУЧЕНИЯ | 2009 |
|
RU2425181C1 |
ЭЛЕКТРОЛИТ ДЛЯ АНОДИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ МЕДНЫХ ГАЛЬВАНОПОКРЫТИЙ | 2013 |
|
RU2529328C1 |
СПОСОБ ФОРМИРОВАНИЯ ГИБРИДНОГО ПОКРЫТИЯ НА АЛЮМИНИИ | 2023 |
|
RU2796602C1 |
СПОСОБ СОЗДАНИЯ НАНОСТРУКТУРНОЙ БИОИНЕРТНОЙ ПОРИСТОЙ ПОВЕРХНОСТИ НА ТИТАНОВЫХ ИМПЛАНТАТАХ | 2011 |
|
RU2469744C1 |
Изобретение относится к области гальванотехники и может быть использовано для увеличения удельной поверхности деталей из сплавов устройств различной функциональности, в частности, при создании каталитически активных устройств. Способ изготовления детали из сплава титан-алюминий с нанопористой поверхностью включает изготовление детали с пористой поверхностью из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С и формирование нанопористого оксида на поверхности детали анодированием в 10,0% растворе серной кислоты с добавкой 0,15% фтористоводородной кислоты при постоянной плотности тока. Технический результат: увеличение удельной поверхности деталей. 1 пр., 1 ил.
Способ изготовления детали из сплава титан-алюминий с нанопористой поверхностью, включающий изготовление детали с пористой поверхностью из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С и формирование нанопористого оксида на поверхности детали анодированием в 10,0% растворе серной кислоты с добавкой 0,15% фтористоводородной кислоты при постоянной плотности тока.
CN 101310897 А, 26.11.2008 | |||
СПОСОБ ПОЛУЧЕНИЯ ХЛОПЬЕВИДНОГО ТАНТАЛОВОГО ПОРОШКА И ХЛОПЬЕВИДНЫЙ ТАНТАЛОВЫЙ ПОРОШОК | 1992 |
|
RU2102189C1 |
СПОСОБ ПОЛУЧЕНИЯ ТАНТАЛОВОГО ПОРОШКА | 1991 |
|
RU2089350C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ МЕДИЦИНСКИХ ИЗДЕЛИЙ (ВАРИАНТЫ) | 2000 |
|
RU2206642C2 |
Авторы
Даты
2014-03-10—Публикация
2011-04-12—Подача