СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ Российский патент 2018 года по МПК C09K11/64 C09K11/61 C01F7/02 C25B1/00 B82B3/00 B82Y40/00 

Описание патента на изобретение RU2655354C1

Изобретение относится к электрохимической технологии получения соединений алюминия, а именно к технологии получения губчатого нанопористого оксида алюминия в виде оксидной пленки анодированием, и может быть использовано при разработке эффективных люминофоров для новых источников света в видимом диапазоне, а также при создании элементов нано-оптоэлектроники.

Оксид алюминия является перспективным материалом для целей оптоэлектроники благодаря уникальным физико-химическим свойствам. Оптические свойства анодированного оксида алюминия (АОА) зависят от структурных (концентрация собственных и примесных дефектов, фазовый состав и др.) и геометрических параметров (форма, упорядочение и размер пор, расстояние между ними), которые можно варьировать, подбирая условия анодирования (Получение и исследования наноструктур: Лабораторный практикум по нанотехнологиям / Под ред. А.С. Сигова, М.: МИРЭА, 2008. - 116 с.).

Известен метод получения анодного оксида алюминия с высокоупорядоченной пористой структурой (Патент RU 2555366 C2, МПК C01F 7/42, В82В 3/00, C25D 11/10, C25D 11/12, опубл. 10.07.15), включающий механическую и/или электрохимическую полировку поверхности алюминия с последующим анодным окислением в водных или водно-спиртовых растворах щавелевой Н2С2О4, фосфорной Н3РО4, серной H2SO4, янтарной C4H6O4, лимонной C6H8O7 кислот с концентрацией от 0.05 до 0.5 моль/литр при температуре от -20÷10°С и напряжении в диапазоне от 5 до 250 В для формирования оксидной пленки в один или два этапа в случае использования металла с гладкой поверхностью. Недостатком данного способа является необходимость использования высокочистого монокристаллического алюминия и проведения дополнительного травления пленки анодного оксида в растворе кислоты или двухэтапного окисления, что усложняет и удорожает процесс. Также отсутствуют данные о люминесценции.

Известен способ получения анодного оксида алюминия в водном растворе 0.4% HF + 4% H2C2O4 (Dhahri S. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution. / S. Dhahri, E. Fazio, F. Barreca, F. Neri, H. Ezzouia // Applied Physics A: Materials Science and processing. - 2016. - №122), заключающийся в напылении алюминия высокой чистоты на поверхность стали, стекла или алюминиевого сплава, который затем последовательно дважды анодируют в течение 15 мин при токе 50 мА и 150 мА, стравливая оксидный слой после первого анодирования в растворе кислот. В данном методе присутствуют такие недостатки, как необходимость напыления высокочистого алюминия на подложку перед анодированием, а также в процессе синтеза губчатая структура образуется только в случае анодирования на подложке из нержавеющей стали. Отсутствуют данные о люминесценции.

Люминофоры на основе нанопористого Al2O3 можно получить анодированием алюминия высокой чистоты в растворах 3 вес. % серной, щавелевой или фосфорной кислот (Gopal Khan, G. Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of F+ center defects / G. Gopal Khan, A.K. Singh, K. Mandal // Journal of Luminescence. - 2013. - №134) в два этапа при 200 А/м2 в течение 30 мин и 2-6 ч соответственно, проведя перед началом отжиг при 400°С в течение 4 ч и электрополировку, а также стравливая оксидный слой после первого анодирования в растворе кислот. Недостатком данного способа является необходимость использования специального оборудования для возбуждения и регистрации люминесценции. Кроме этого необходимы высокочистый алюминий (99.99%) и сложная предварительная обработка поверхности.

Известен способ получения губчатого нанопористого ("sponge-like nano-porous") Al2O3, применяемого для повышения теплопроводности (Zhang, В.J. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling / B.J. Zhang, K.J. Kim, H. Yoon // International Journal of Heat and Mass Transfer. - 2012. - №55), заключающийся в анодном окислении алюминиевого сплава в электролите 0.3 моль/л ортофосфорной кислоты при 140 В и 5°С, проходящем в два этапа с длительностью второго шага в 2 ч, перед которым поверхность предварительно очищают и полируют электрохимически, а в промежутке между анодированиями и после них оксидный слой подвергают травлению в растворе кислоты. Для этого метода не представлено данных о люминесцентных свойствах материала. Также недостатком такого процесса является то, что для его реализации необходимо использование сплава А1 6061 (аналог АД33), что удорожает технологию.

Наиболее близким к заявляемому является метод синтеза люминофора на основе нанопористого оксида алюминия (Nourmohammadi, А. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphori cacid / A. Nourmohammadi, S.J. Asadabadi, M.H. Yousefi, M. Ghasemzadeh // Nanoscale Research Letters. - 2012. - №1) двухстадийным анодированием алюминия в растворе ортофосфорной кислоты при постоянных значениях температуры 1°С, напряжения 100-130 В и длительности процесса 20 ч на каждом из этапов, где алюминиевая фольга предварительно подвергается химической обработке в смеси кислот, отжигают и электрохимически полируют, а по завершении всего процесса подложку из алюминия растворяют в растворе HgCl2. Недостатками данного метода являются: высокие временные и материальные затраты, которые связаны с необходимостью использования высокочистого алюминия (99.997% Al), с предварительной обработкой поверхности и с большой длительностью двухстадийного процесса анодирования, а также недостаточная интенсивность свечения синтезированного люминофора, которую можно регистрировать только с использованием специализированного спектрометрического оборудования и при возбуждении ультрафиолетовым излучением.

Технической проблемой, на решение которой направлено изобретение, является отсутствие способа получения люминофора на основе губчатого нанопористого Al2O3 со свечением, воспринимаемым невооруженным человеческим глазом при дневном освещении.

Техническим результатом, достигаемым при реализации изобретения, является получение нового люминофора на основе губчатого нанопористого Al2O3 со свечением, воспринимаемым невооруженным человеческим глазом при дневном освещении.

Заявляемый способ получения люминофора на основе губчатого нанопористого оксида алюминия включает анодирование алюминия.

От прототипа способ отличается тем, что в качестве электролита используется раствор 0.9 - 10 моль/л фтороводородной кислоты (HF) в этиленгликоле при постоянном напряжении в диапазоне 75 - 400 В.

Сущность изобретения поясняется фигурами, на которых изображено:

- на фиг. 1 - изображение поверхности губчатого нанопористого Al2O3, полученного в растворе 0.9 моль/л HF при напряжении 150 В;

- на фиг. 2 - изображение скола губчатого нанопористого Al2O3, полученного в растворе 0.9 моль/л HF при напряжении 150 В;

- на фиг. 3 - нормированные спектры свечения губчатого нанопористого Al2O3, полученного в растворах с разной концентрацией HF при напряжении 150 В;

- на фиг. 4 - нормированные спектры свечения губчатого нанопористого Al2O3, полученного в растворе 0.9 моль/л HF при разных напряжениях;

- на фиг. 5 - сравнение спектра свечения губчатого нанопористого Al2O3, полученного в растворе 6.2 моль/л HF при напряжении 150 В с известным люминесцентным аналогом.

Процесс получения губчатого нанопористого оксида алюминия проходит в типовой двухэлектродной электрохимической ячейке с термостатированием. Поддержание постоянной температуры позволяет исключить возрастание величины тока анодирования, что могло бы привести к неконтролируемому росту скорости протекания реакции и процесса травления. В качестве анода используют пластинку алюминия технической чистоты (сплав А5). В качестве катода применяют нержавеющую сталь. Перед началом процесса анодирования заливают электролит. На протяжении всего процесса синтеза между катодом и анодом устанавливают заданное напряжение и поддерживают постоянную температуру электролита. С увеличением длительности процесса, а также при повышении значений напряжения, температуры и концентрации фтороводородной кислоты растет толщина итогового оксидного слоя и, соответственно, интенсивность фотолюминесценции.

Анализ снимков, полученных с помощью электронного микроскопа Sigma VP Carl Zeiss, показал, что оксид алюминия образуется в виде анодного оксидного слоя с губчатой структурой, возникающего на поверхности алюминия (Фиг. 1). Этот слой Al2O3 имеет неупорядоченную структуру с порами диаметром до 300 нм и направленностью роста вглубь алюминия (Фиг. 2). Отсутствие периодичности в расположении пор получаемого оксида и их сложный разветвленный характер возникает вследствие использования фтороводородной кислоты. С помощью рентгенофазового анализа на дифрактометре PANalytical Pro установлено, что полученный в результате синтеза оксид алюминия является аморфным. При помощи спектрометра Perkin Elmer LS 55 зарегистрирована полоса фотолюминесценции в области 370 - 600 нм, определенная по уровню 0.1 от максимальной интенсивности, при возбуждении в полосе 277 нм.

Способ получения люминофора на основе губчатого оксида алюминия иллюстрируется следующими примерами выполнения.

Пример 1. В электрохимическую ванну заливают раствор 0.9 - 10 моль/л фтороводородной кислоты в этиленгликоле и термостатируют при 1°С. Между катодом и анодом устанавливают постоянное напряжение 150 В. Продолжительность процесса синтеза составляет 2 ч. За это время на поверхности алюминия формируется слой губчатого Al2O3 с аморфной структурой.

Пример 2 проведен аналогично примеру 1 с изменением ряда характеристик способа. В электрохимическую ванну заливают раствор 0.9 моль/л фтороводородной кислоты в этиленгликоле и поддерживают температуру 1°С. Между катодом и анодом устанавливают постоянное напряжение 75 - 400 В.

Нормированные спектры фотолюминесценции полученных в Примере 1 и 2 образцов приведены на Фиг. 3 и 4, соответственно. Анодирование в электролите с указанными концентрациями при постоянном напряжении в заявленном диапазоне позволяет получить люминофор с широкой полосой свечения, при этом возможно варьировать ее интенсивность в пределах 0.2-1.8 от среднего значения и положение максимума в диапазоне 440 - 480 нм.

На Фиг. 5 приведены спектры свечения губчатого нанопористого оксида алюминия и АОА, полученного в электролите щавелевой кислоты при известных условиях (Li, Z. Blue luminescence in porous anodic alumina films / Z. Li, K. Huang // J. Phys.: Condens. Matter. - 2007. - №19). Предложенный люминофор в спектральной области 370 - 600 нм имеет интегральную интенсивность свечения, которая больше в ≈130 раз по сравнению с известными аналогами на основе нанопористого оксида алюминия.

Таким образом, достигается заявленный технический результат - получение нового люминофора на основе губчатого нанопористого Al2O3. Дополнительное преимущество заключается в том, что регистрируемое свечение видно невооруженным глазом при дневном освещении, а при получении используется более дешевый алюминий технической чистоты.

Похожие патенты RU2655354C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ КРИСТАЛЛИЧЕСКОГО НАНОПОРИСТОГО ОКСИДА НА СПЛАВЕ ТИТАН-АЛЮМИНИЙ 2015
  • Яковлева Наталья Михайловна
  • Кокатев Александр Николаевич
  • Степанова Кристина Вячеславовна
  • Чупахина Елена Ананьевна
RU2601904C2
СПОСОБ ФОРМИРОВАНИЯ ПОРИСТОГО ОКСИДА НА СПЛАВЕ ТИТАН-АЛЮМИНИЙ 2011
  • Кокатев Александр Николаевич
  • Ханина Елена Яковлевна
  • Чупахина Елена Ананьевна
  • Яковлев Александр Николаевич
  • Яковлева Наталья Михайловна
RU2509181C2
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ОСНОВЕ НАНОПОРИСТОГО ДИОКСИДА ТИТАНА 2016
  • Серпова Мария Александровна
  • Суворов Дмитрий Владимирович
  • Гололобов Геннадий Петрович
  • Стрючкова Юлия Михайловна
  • Тарабрин Дмитрий Юрьевич
RU2631780C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАН С РЕГУЛЯРНЫМИ НАНОПОРАМИ ИЗ ОКСИДОВ ВЕНТИЛЬНЫХ МЕТАЛЛОВ 2009
  • Лесневский Леонид Николаевич
  • Михеев Сергей Юрьевич
  • Рыжов Юрий Алексеевич
  • Тюрин Владимир Николаевич
  • Черновский Михаил Николаевич
  • Шкарбан Игорь Иванович
RU2405621C2
СПОСОБ ПОЛУЧЕНИЯ ГИБКОЙ НАНОПОРИСТОЙ КОМПОЗИЦИОННОЙ МЕМБРАНЫ С ЯЧЕИСТОЙ СТРУКТУРОЙ ИЗ АНОДНОГО ОКСИДА МЕТАЛЛА ИЛИ СПЛАВА 2012
  • Петухов Дмитрий Игоревич
  • Напольский Кирилл Сергеевич
  • Елисеев Андрей Анатольевич
  • Лукашин Алексей Викторович
RU2545887C2
Способ формирования нанопористого оксида на поверхности имплантата из порошкового ниобия 2015
  • Шульга Алиса Михайловна
  • Яковлева Наталья Михайловна
  • Степанова Кристина Вячеславовна
  • Чупахина Елена Ананьевна
RU2633143C2
СПОСОБ ФОРМИРОВАНИЯ ЦВЕТНОГО ДЕКОРАТИВНОГО ПОКРЫТИЯ С ПОМОЩЬЮ АНОДИРОВАНИЯ 2015
  • Напольский Кирилл Сергеевич
  • Садыков Алексей Игоревич
  • Напольский Филипп Сергеевич
RU2620801C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВОЙ НАНОСТРУКТУРЫ 2011
  • Валеев Ришат Галеевич
  • Ветошкин Владимир Михайлович
  • Бельтюков Артемий Николаевич
  • Сурнин Дмитрий Викторович
  • Елисеев Андрей Анатольевич
  • Напольский Кирилл Сергеевич
  • Росляков Илья Владимирович
  • Петухов Дмитрий Игоревич
RU2460166C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА 2012
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Дронов Алексей Алексеевич
  • Пятилова Ольга Вениаминовна
  • Шевяков Василий Иванович
RU2495963C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУР ПОЛУПРОВОДНИКА 2008
  • Напольский Кирилл Сергеевич
  • Валеев Ришат Галеевич
  • Росляков Илья Владимирович
  • Лукашин Алексей Викторович
  • Сурнин Дмитрий Викторович
  • Ветошкин Владимир Михайлович
  • Романов Эдуард Аркадьевич
  • Лысков Николай Викторович
  • Укше Александр Евгеньевич
  • Добровольский Юрий Анатольевич
  • Елисеев Андрей Анатольевич
RU2385835C1

Иллюстрации к изобретению RU 2 655 354 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ

Изобретение относится к химической промышленности и может быть использовано при изготовлении эффективных люминофоров для элементов нано-оптоэлектроники и источников света в видимом диапазоне. Алюминий анодируют в растворе 0,9 - 10 моль/л фтороводородной кислоты в этиленгликоле при постоянном напряжении в диапазоне 75 - 400 В с поддержанием постоянной температуры 1°С. В качестве анода используют пластинку алюминия технической чистоты, в качестве катода – нержавеющую сталь. Полученный губчатый нанопористый оксид алюминия люминесцирует при дневном освещении, его свечение воспринимается невооруженным глазом. Способ прост и не требует использования материалов высокой чистоты. 5 ил., 2 пр.

Формула изобретения RU 2 655 354 C1

Способ получения люминофора на основе губчатого нанопористого оксида алюминия путем анодирования алюминия с поддержанием постоянной температуры, отличающийся тем, что в качестве электролита используется раствор 0,9 - 10 моль/л фтороводородной кислоты в этиленгликоле и процесс ведут при постоянном напряжении в диапазоне 75 - 400 В.

Документы, цитированные в отчете о поиске Патент 2018 года RU2655354C1

ABOLGHASEM NOURMOHAMMADI et al., Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid, Nanoscale Res
Lett., 2012, v
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Станционный указатель направления, времени отхода поездов и т.п. 1925
  • Гринченко А.И.
SU689A1
JP 2011009450 A, 13.01.2011
К.В
ЧЕРНЯКОВА и др., Фотолюминесценция пористого оксида алюминия, полученного в растворе винной кислоты, Свиридовские чтения, Сб
статей, Минск, 2012, вып
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Кулисный парораспределительный механизм 1920
  • Шакшин С.
SU177A1
TAO GAO et al., Blue luminescence in porous anodic alumina films: the role of oxalic impurities, J
Phys.: Condens
Matter, 2003, v
Прибор для нагревания перетягиваемых бандажей подвижного состава 1917
  • Колоницкий Е.А.
SU15A1
Распорный междурельсовый вкладыш 1925
  • Тенов Н.Н.
SU2071A1
BONG JUNE ZHANG et al., Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling, Intern
J
of Heat and Mass Transfer, 2012, v
Устройство двукратного усилителя с катодными лампами 1920
  • Шенфер К.И.
SU55A1
Станок для одновременной резки, клейки и наматывания бобин полуавтоматическим путем 1926
  • Кацман А.Д.
SU7487A1
GOBINDA GOPAL KHAN et al., Structure dependent photoluminescence of nanoporous amorphous anodic aluminum oxide membranes: Role of F + center defects, J
of Luminescence, 2013, v
Халат для профессиональных целей 1918
  • Семов В.В.
SU134A1
Телефонная трансляция с катодным реле 1921
  • Коваленков В.И.
SU772A1

RU 2 655 354 C1

Авторы

Ильин Денис Олегович

Вохминцев Александр Сергеевич

Вайнштейн Илья Александрович

Даты

2018-05-25Публикация

2017-04-03Подача