Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, которые могут быть использованы в высокотемпературных электрохимических устройствах для получения водорода и/или кислорода.
Известен твердооксидный материал на основе оксида церия, содопированный стронцием и самарием Ce0.8(Sm1-xSrx)0.2O2-δ (Zhan Gao, Xingmin Liu, Bill Bergman, Zhe Zhao. Enhanced ionic conductivity of Ce0.8Sm0.2O2-δ by Sr addition // Journal of Power Sources 208 (2012) 225-231) [l]. Данный материал обладает высокой ионной проводимостью, значительной электронной проводимостью, стабильностью в восстановительной атмосфере, в связи с чем может применяться в качестве мембран для получения водорода. В тоже время данный материал характеризуется низким уровнем электронной (дырочной) проводимости в окислительной атмосфере, что делает невозможным применение данной керамики как мембраны для получения кислорода. Стоит отметить, что получение газоплотной керамики из известного материала (относительная плотность 98%) требует высоких температур спекания -1600°С.
Известный твердооксидный материал на основе титанато-феррита стронция SrTi1-xFexO3-x/2 (Svein Steinsvik, Renato Bugge, Jon Gjonnes, Johan Tafto, Truls Norby .The defect structure of SrTi1-xFexO3-y (x=0-0.8) investigated by electrical conductivity measurement and electron energy loss spectroscopy (EELS) J. Phis. Chem. Solids 58, 1997, 969-976) [3] характеризуется высокой ионно-электронной проводимостью как в окислительной, так и в восстановительной атмосфере и может использоваться в качестве мембран для получения кислорода и водорода. Спекание в плотную керамику (относительная плотность ~90%) известного материала протекает при невысоких температурах порядка 1200-1350°С. Исследование свойств данного материала выявили его недостаточную термодинамическую стабильность в восстановительной атмосфере, низкую устойчивость к термоциклированию и низкую механическую прочность.
Задача настоящего изобретения состоит в разработке твердооксидного материала мембран для получения водорода и/или кислорода с высокой термодинамической стабильностью и механической прочностью в условиях работы электрохимических устройств.
Для решения поставленной задачи заявлен твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ-xSrTi0.5Fe0.5O3-δ, где х=0,25; 0,50; 0,75.
Заявляемый твердооксидный материал характеризуется массовыми отношениями фазы перовскита к фазе флюорита 0,25:0,75; 0,50:0,50; 0,75:0,25, что соответствует составу (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5F0.5O3-δ, где х=0,25; 0,50; 0,75. При этом увеличение флюоритной фазы (содопированный оксид церия) в композите приводит к повышению термодинамической стабильности материала в восстановительной атмосфере, увеличению микротвердости керамики до 20%, росту электропроводности. Увеличение перовскитовой фазы (титанато-феррита стронция) в композите приводит к увеличению проводимости в окислительной области. Экспериментально установлено, что при массовом соотношений фазы перовскита к фазе флюорита 0,25:0,75; 0,50:0,50; 0,75:0,25 композитный материал обладает преимуществами обеих фаз, а именно: повышенной термодинамической стабильностью в восстановительной атмосфере, механической прочностью, а также высокой электронно-ионной проводимостью как в восстановительной, так и в окислительной атмосферах. Эффект увеличения проводимости композитных материалов по сравнению с аналогом и прототипом позволяет расширить область применения материалов. По сравнению с аналогом [1] - (Ce0.8(Sm1-xSrx)0.2O2-δ) - композитный материал обладает большей проводимостью в окислительной атмосфере, что позволяет использовать его в качестве мембран для получения кислорода. По сравнению с прототипом [2] - (SrTi0.5Fe0.5O3-δ) - заявленный материал обладает большей механической прочностью и стабильностью в восстановительной атмосфере, что позволяет более эффективно использовать его в качестве мембран для получения водорода. При значении x, близком к 0 или 1, данный эффект практически не проявляется, материалы обладают свойствами, характерными для индивидуальных фаз.
Технический результат, достигаемый заявленным изобретением, заключается в повышении устойчивости твердооксидного материала в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности.
Материалы на основе оксида церия, содопированного редкоземельным элементом (самарий, гадолиний) и стронцием, а также титанато-феррита стронция получали методом твердофазного синтеза из соответствующих оксидов и карбонатов. Синтезированные в течение 10 часов при температуре 1050°С порошки были смешаны в необходимых соотношениях и спечены при температурах 1350-1550°С в течение 3 часов с целью получения газоплотной композитной керамики.
Изобретение иллюстрируется следующим. На фиг.1 представлены рентгенограммы порошков заявленного твердооксидного композитного материала (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5Fe0.5O3-δ. Рентгенофазовый анализ показал, что спеченные образцы заявленного композитного материала являются двухфазными, состоящими из перовскитной (пространственная группа Pm3m) и флюоритной фаз (пространственная группа Fm3m). Фиг.2 иллюстрирует данные сканирующей электронной микроскопии для образца SrTi0.5Fе0.5O3-δ, при этом светлые зерна соответствуют фазе флюорита, более темные - перовскитной фазе. На фиг.3 представлены данные сканирующей электронной микроскопии для системы 0,25 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,75 SrTi0.5Fe0.5O3-δ. Фиг.4 иллюстрирует данные сканирующей электронной микроскопии для образца 0,5 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,5 SrTi0.5Fe0.5O3-δ. На фиг.5 представлены данные сканирующей электронной микроскопии для системы 0,75 Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,25 SrTi0.5Fe0.5O3-δ. На фиг.6 - данные сканирующей электронной микроскопии для образца Ce0.8(Sm0.8Sr0.2)0.2O2-δ. На фиг.7 представлено распределение элемента - кислорода в композитном материале при х=0,50. На фиг.8 - распределение элемента титана в композитном материале при х=0,50. На фиг.9 - распределение элемента железа в композитном материале при х=0,50. На фиг.10 - распределение элемента стронция в композитном материале при х=0,50. На фиг.11 представлено распределение элемента церия в композитном материале при х=0,50. На фиг.12 представлено распределение элемента самария в композитном материале при х=0,50. Фиг.13 иллюстрирует зависимость электропроводности образцов базовых составов и композитной керамики в зависимости от парциального давления кислорода. На данной фигуре введены обозначения, соответствующие определенному составу исследуемых материалов: ■ - Ce0.8(Sm0.8Sr0.2)0.2O2-δ [1], ♦ - 0,75Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,25SrTi0.5Fe0.5O3-δ; ▲ - 0,50Ce0.8(Sm0.8Si0.2)0.2O2-δ - 0,50SeТi0.5Fе0.5O3-δ; ● -0,25Ce0.8(Sm0.8Sr0.2)0.2O2-δ - 0,75SrTi0.5Fe0.5O3-δ, × - SrTi0.5Fe0.5O3-δ [2]). В таблице приведены результаты измерения микротвердости, электропроводности при 600, 900°С и температуры спекания образцов заявленного материала и образцов аналогов.
Из полученных данных изотермической зависимости электропроводности следует, что образцы заявленного материала обладают высокой электронной (дырочной) проводимостью в окислительной области по сравнению с аналогом [1], что обеспечено присутствием фазы перовскита; высокой ионно-электронной проводимостью и механической прочностью по сравнению с прототипом [2], что связано с присутствием фазы флюорита. Полученные свойства заявленного материала позволяют расширить область его применения.
Таким образом, разработан твердооксидный композитный материал, обладающий повышенной устойчивостью в восстановительной атмосфере, с высоким уровнем общей электропроводности и механической прочностью, пригодный для использования в качестве мембран для получения водорода и кислорода.
название | год | авторы | номер документа |
---|---|---|---|
МЕТАЛЛОКЕРАМИЧЕСКАЯ АНОДНАЯ СТРУКТУРА (ВАРИАНТЫ) И ЕЕ ПРИМЕНЕНИЕ | 2008 |
|
RU2480863C2 |
ТВЕРДЫЙ ЭЛЕКТРОЛИТ НА ОСНОВЕ ОКСИДА ЦЕРИЯ И ЦЕРАТА БАРИЯ | 2012 |
|
RU2495854C1 |
КЕРАМИЧЕСКАЯ АНОДНАЯ СТРУКТУРА ( ЕЕ ВАРИАНТЫ ) И ЕЕ ПРИМЕНЕНИЕ | 2008 |
|
RU2479893C2 |
ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ | 2005 |
|
RU2356132C2 |
КАТОДНЫЙ МАТЕРИАЛ ДЛЯ ТОТЭ НА ОСНОВЕ МЕДЬ-СОДЕРЖАЩИХ СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ | 2014 |
|
RU2550816C1 |
ТВЕРДООКСИДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ | 2008 |
|
RU2399996C1 |
СПОСОБ ФОРМИРОВАНИЯ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ С МЕТАЛЛИЧЕСКОЙ ОПОРОЙ | 2014 |
|
RU2670423C2 |
ТОНКОСЛОЙНЫЙ ТВЕРДООКСИДНЫЙ ЭЛЕМЕНТ | 2007 |
|
RU2427945C2 |
АНОД ДЛЯ ТВЕРДООКСИДНОГО ТОПЛИВНОГО ЭЛЕМЕНТА | 2017 |
|
RU2743000C2 |
ТОПЛИВНЫЙ ЭЛЕМЕНТ | 2007 |
|
RU2361332C1 |
Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5Fe0.5O3-δ, где x=0,25; 0,50; 0,75. Материалы обладают свойствами, характерными для индивидуальных фаз. Технический результат - повышение устойчивости материала в восстановительной атмосфере при сохранении или повышении механической прочности и уровня общей электропроводности. 1 табл., 13 ил.
Твердооксидный композитный материал для мембран электрохимических устройств, содержащий титанато-феррит стронция, отличающийся тем, что материал представляет собой композит на основе содопированного оксида церия и титанато-феррита стронция, состав которого отвечает формуле (1-x)Ce0.8(Sm0.8Sr0.2)0.2O2-δ - xSrTi0.5Fe0.5O3-δ, где х=0,25; 0,50; 0,75.
STEINSVIK S | |||
et al "The defect structure of SrTiFeO (x=0-0,8) investigated by electrical conductivity measurement and electron energy loss spectroscopy (EELS)", J | |||
Phis | |||
Chem | |||
Solids, 58, 1997, p.969-976 | |||
Керамический материал | 1974 |
|
SU533575A1 |
RU 2008134998 A1, 10.03.2010 | |||
Способ селекции зерновых и крупяных культур | 1986 |
|
SU1452507A1 |
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
Авторы
Даты
2014-03-27—Публикация
2012-10-01—Подача