СПОСОБ МОНИТОРИНГА ЛЕЧЕНИЯ ЗАБОЛЕВАНИЯ, ВКЛЮЧАЮЩИЙ ФЛУОРЕСЦЕНТНУЮ ДИАГНОСТИКУ ЗАБОЛЕВАНИЯ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2014 года по МПК G01N21/64 

Описание патента на изобретение RU2511262C2

Изобретение относится к области флуоресцентного анализа, а именно к модификациям оптоэлектронного оборудования и методам исследования с его помощью биологических объектов, и может быть использовано для идентификации многокомпонентных систем, в частности для диагностики заболевания и мониторинга его лечения на основе изменения флуоресцентного отклика биологических жидкостей.

На сегодняшний день основным лабораторным методом диагностики заболеваний микробной этиологии, широко применяемым в практической работе лечебных учреждений, остается классический бактериологический метод. Основными недостатками этого метода являются длительность и сложность проведения анализа, неизбежность влияния субъективного фактора, а также невозможность его использования в качестве скринингового инструмента.

Из уровня техники известен способ диагностики заболевания, включающий возбуждение различных центров флуоресценции образца путем его облучения лазерным излучением разных длин волн в ультрафиолетовом, видимом и/или инфракрасном спектральных диапазонах, и регистрацию соответствующих спектров идущего от образца излучения (см. патент RU 35440, кл. G01N 33/48, опубл. 10.01.2004). Недостатками известного способа являются отсутствие подходящей методики выбора образца и идентификации заболевания, а также невозможность проведения мониторинга лечения. Из указанного источника известно также устройство для проведения флуоресцентного анализа, содержащее источники возбуждающего излучения в виде лазеров с различными рабочими длинами волн в ультрафиолетовом, видимом и/или инфракрасном спектральных диапазонах, оптоволоконные линии, спектрометр с блоком предварительной обработки сигнала, блок управления и компьютер с установленным на нем программным обеспечением для обработки спектров флуоресценции, получаемых от блока предварительной обработки сигнала. Недостатками известного устройства являются невысокая чувствительность акустооптического спектрометра; ненадежность механических узлов (оптического затвора и т.д.); отсутствие светофильтров, исключающее возможность одновременного исследования флуоресценции и рассеяния; значительность энергетических потерь, обусловленная неоптимальностью расположения оптоволоконных линий; отсутствие автоматического управления, значительно усложняющее использование установки и обуславливающее появление неконтролируемого изменения условий эксперимента из-за большой длительности его проведения (в том числе изменение свойств самого образца); а также искажение результатов при изменении температуры и невозможность исследования спектров пропускания.

Задачей изобретения является устранение указанных недостатков и создание автоматического высокоинформативного аналитического комплекса, позволяющего быстро и достоверно диагностировать заболевание и вести мониторинг его лечения. Технический результат заключается в повышении информативности результатов, полученных в автоматическом режиме.

В части способа поставленная задача решается, а технический результат достигается тем, что способ мониторинга лечения заболевания включает флуоресцентную диагностику заболевания и заключается в возбуждении различных центров флуоресценции образца путем его облучения лазерным излучением, по крайнем мере, двух длин волн в ультрафиолетовом, видимом и/или инфракрасном спектральных диапазонах, и регистрацию соответственно, по крайней мере, двух спектров идущего от образца излучения, причем в качестве образца используют биологическую жидкость, полученную от пациента, а наличие, степень и характер заболевания идентифицируют путем выявления особенностей спектров идущего от образца излучения, полученных при различном возбуждении, по сравнению с соответствующими спектрами эталонного образца, выбранного в качестве здорового, и типовыми спектрами наиболее распространенных заболеваний, при этом для проведения мониторинга лечения измерения проводят для одного и того же пациента через различные промежутки времени, а сравнение спектров проводят в диапазоне, включающем линию рассеянного лазерного излучения. В качестве биологической жидкости может быть использована кровь, плазма крови, моча, гной и/или плевральная жидкость. Целесообразно дополнительно регистрировать спектр пропускания образца, проводить его сравнение со спектром пропускания эталонного образца и использовать выявленные особенности спектра пропускания в качестве дополнительного параметра для идентификации наличия, степени и характера заболевания.

В части устройства поставленная задача решается, а технический результат достигается тем, что в устройстве для осуществления указанного способа, содержащем, по крайней мере, два источника возбуждающего излучения в виде лазеров с различными рабочими длинами волн в ультрафиолетовом, видимом и/или инфракрасном спектральных диапазонах, оптоволоконные линии, спектрометр с блоком предварительной обработки сигнала, блок управления и компьютер с установленным на нем программным обеспечением для обработки спектров флуоресценции, получаемых от блока предварительной обработки сигнала, передающие оптоволоконные линии, идущие от каждого лазера к образцу, а также приемная оптоволоконная линия, идущая от образца к спектрометру, со стороны образца собраны в пучок с общим наконечником, спектрометр содержит коллиматор со сменными светофильтрами, дифракционную решетку и ПЗС-матрицу, соединенную с блоком предварительной обработки сигнала, а блок управления, получающий командные сигналы от компьютера, выполнен с возможностью управления включением/выключением лазеров и установкой в коллиматоре соответствующего включенному лазеру светофильтра. Перед наконечником оптоволоконных линий предпочтительно установлен подвижный держатель образцов, выполненный с возможностью установки перед наконечником одного из образцов в соответствии с сигналом от блока управления. С противоположной от наконечника стороны держателя может быть установлен источник излучения со сплошным спектром для исследования пропускания образца. Держатель образцов предпочтительно расположен в теплоизолированном кожухе, который оснащен термостатом, подключенным к блоку управления.

На чертеже представлена общая схема предлагаемого устройства.

Устройство для проведения флуоресцентного анализа содержит источник возбуждения 1, спектрометр 2, соединительные оптоволоконные линии 3 и держатель образцов 4. В качестве источника возбуждения 1 используется система, включающая три лазера 5 с рабочими длинами волн в красном, зеленом и синем диапазонах видимого спектра (также можно использовать ультрафиолетовый и/или инфракрасный диапазоны). Спектрометр 2 содержит коллиматор 6, в котором установлено колесо 7 со сменными светофильтрами, полихроматор с дифракционной решеткой 8 и системой поворотных зеркал 9 и систему регистрации в виде ПЗС-линейки 10, соединенной с блоком предварительной обработки сигнала 11. Передающие оптоволоконные линии 3', идущие от лазеров 5, и приемная оптоволоконная линия 3”, ведущая к спектрометру 2, со стороны образца 12 собраны в пучок с общим наконечником 13, установленным под острым углом (в плоскости, перпендикулярной плоскости чертежа) к поверхности образца 12. Образцы 12, представляющие собой спектрометрические пробирки с исследуемой жидкостью, устанавливаются в отсеках подвижного держателя 4 (в держателе может быть выполнено 12 или более отсеков). Для получения информации о пропускании с другой стороны от исследуемого образца 12 установлен источник сплошного спектра (лампа) 14.

Выбор исследуемого образца 12 (за счет изменения положения подвижного держателя 4), работа лазеров 5 и лампы 14 (их включение/выключение), а также установка соответствующего светофильтра (путем поворота колеса 7) осуществляется с помощью блока управления 15, подключенного к компьютеру 16 с установленным на нем необходимым программным обеспечением. Блок предварительной обработки сигнала 11 также подключен к компьютеру 16 для визуализации и обработки полученных спектров.

Для исключения влияния внешних условий на интенсивность флуоресценции во время измерений держатель 4 с пробирками 12 располагается в теплоизолированном кожухе 17. Кожух 17 оснащен термостатом 18, температурный режим которого задается блоком управления 15. В кожухе 17 также установлена бактерицидная лампа 19, дезинфицирующая его внутренний объем после окончания эксперимента.

Вариации доступных команд для блока управления 15 выведены в интерфейс специализированной программы, установленной на компьютере 16. В этой же программе происходит визуализация и обработка полученных спектров, отсюда же может осуществляться печать полученных данных и изображений. Разработанная программа позволяет в автоматическом режиме учитывать уровень шума, подбирать необходимую экспозицию в зависимости от уровня сигнала, усреднять значения для серии измерений, выявлять особенности формы спектра, ассоциировать эти особенности с определенным типом заболевания, а также вести базу данных с привязкой к медицинской карте пациента и проводить статистический анализ содержащейся в базе информации.

Предлагаемое устройство работает следующим образом.

По команде от компьютера 16 блок управления 15 устанавливает термостат 17 на выбранную температуру. После достижение необходимой температуры блок управления 15 включает один из источников света (один из лазеров 5 или лампу 14) и поворачивает колесо 7 светофильтров в соответствующее положение. Если включен один из лазеров 5, то свет от него по передающей оптоволоконной линии 3' направляется к образцу и переводит его центры флуоресценции (поглощающие в области излучения этого лазера) в возбужденное состояние. Релаксация из этого состояния вызывает свечение в более широком диапазоне, которое по приемной линии 3” поступает к спектрометру 2 (установка наконечника 13 под углом исключает вероятность попадания в приемную линию света лазера, отраженного от поверхности пробирки). Если же включена лампа 14, то на спектрометр 2 поступает ее излучение, спектр которого искажен образцом и характеризует его поглощения. Из приемной линии 3” пучок света направляется в коллиматор 6, где расширяется, проходит через светофильтр и фокусируется на входной щели полихроматора. Изображение щели с помощью зеркал 9 направляется на дифракционную решетку 8, после чего разложенное в спектр, попадает на ПЗС-линейку 10. Электрический сигнал от фотодиодов линейки 10, величина которого соответствует интенсивности излучения на соответствующей длине волны, направляется в блок предварительной обработки сигнала 11, а затем на компьютер 16, где производится его окончательная обработка специализированным программным обеспечением. Затем система включает следующий источник света (отключая предыдущий) и цикл измерения повторяется. После окончания серии измерений одного образца по команде блока управления 15 держатель 4 устанавливает перед наконечником 13 следующий образец 12.

Таким образом, предлагаемое устройство позволяет в автоматическом режиме без дополнительных команд пользователя последовательно (с интервалом порядка мкс) снимать по 4 характеристических спектра для каждого образца (3 спектра флуоресценции при возбуждении различными лазерами 5 и спектр пропускания при включенной лампе 14 и выключенных лазерах 5). Спектры флуоресценции получают в диапазоне, включающем линию лазерного излучения, частично задавленного соответствующим светофильтром, т.е. эти спектры также несут информацию о рассеянии образца. Путем подбора соответствующего светофильтра можно относительно уравнять интенсивности рассеянного и флуоресцентного излучений и таким образом обеспечить возможность их одновременного наблюдения с необходимым уровнем информативности. Тот факт, что все характеристические спектры снимаются практически в одно время, минимизирует возможность изменения неконтролируемых параметров (в том числе связанных со старением образца и/или с человеческим фактором), а следовательно, значительно повышает адекватность полученных результатов.

Диагностика заболевания и мониторинг его лечения с помощью предлагаемого устройства осуществляется следующим образом.

У пациента производят забор образца биологической жидкости, например плазмы крови (также может быть использована сама кровь, моча, гной, плевральная или другая биологическая жидкость). Для повышения информативности возможно использование при анализе одновременно нескольких жидкостей от одного пациента. В случае необходимости перед началом измерений жидкость может быть подготовлена особым образом путем физического воздействия или добавления специальных реагентов. Затем образец 12 жидкости помещают в стандартизированную спектрометрическую пробирку и устанавливают пробирку в один из отсеков держателя 4.

В специализированной программе формируют описание каждого из установленных в держателе образцов (тип жидкости, ФИО пациента, дата рождения и т.д.), после чего подают команду о начале измерений. В соответствии с этой командой блок управления 15 начинает пошагово перемещать держатель 4 таким образом, что перед наконечником 13 последовательно располагаются различные образцы 12. В течение одного шага для каждого образца получают 4 спектра: 3 спектра излучения путем последовательного возбуждения различных центров флуоресценции образца излучением от 3-х разных лазеров и 1 спектр пропускания при выключенных лазерах 5 и включенном источнике сплошного спектра 14. С целью повышения точности измерения каждый спектр снимают несколько раз, после чего проводят усреднение для серии измерений.

Набор характерных спектров, полученных для каждого образца, сравнивают с соответствующими спектрами эталонного образца, выбранного в качестве здорового (например, плазмы крови или другой жидкости заведомо здорового донора). Для учета информации о коэффициенте рассеяния сравнение спектров излучения проводят в диапазоне, включающем лазерную линию. Наличие, степень и характер заболевания идентифицируют путем выявления особенностей формы спектров: наличие дополнительных полос, различие в их ширинах, соотношение и абсолютные значения интенсивностей (как интенсивности отдельных полос, так и интегральной интенсивности) и т.п.

Для проведения диагностики в программу загружают базу данных с типовыми спектрами наиболее распространенных заболеваний и осуществляют автоматическое распознавание. Для проведения мониторинга лечения проводят измерения для одного и того же пациента через различные промежутки времени.

Результаты измерений и сравнения отражаются на мониторе в виде соответствующих графиков, диаграмм и таблиц. Все результаты сохраняют в базе данных для обеспечения возможности последующей обработки и контроля.

Предлагаемое изобретение позволяет быстро и точно проводить комплексный анализ исследуемых объектов, дающий о них полную и емкую информацию. Наличие нескольких лазеров позволяет выборочно возбуждать различные центры свечения и снимать их характеристики независимо друг от друга. Полихроматор на основе дифракционной решетки снижает влияние электрических помех и в совокупности с колесом светофильтров в коллиматоре обеспечивает возможность одновременного наблюдения флуоресценции и рассеяния. Электронная система регистрации на основе ПЗС-матрицы, одновременно дающая информацию об интенсивностях излучения на различных длинах волн, позволяет получить гораздо более точное спектральное отображение и непосредственно сравнивать формы полученных спектров. Наличие источника сплошного спектра позволяет дополнить полученные данные спектрами пропускания. Установка держателя с образцами в термостате исключает возможность влияния температурных изменений окружающей среды на результаты эксперимента. Проведение анализа в автоматическом режиме значительно ускоряет исследование и снижает вероятность появления некорректных данных. Использование в качестве образца биологической жидкости упрощает его получение и позволяет определить степень влияние заболевания на те или иные системы организма. Идентификация заболевания путем сравнения с эталонным образцом обеспечивает возможность проведения объективного компьютерного распознавания. Таким образом, заявленное изобретение в целом позволяет значительно повысить достоверность и информативность проводимого анализа.

Пример

Пациент П., 75 лет, муж.

При исследовании плазмы крови согласно предлагаемому способу с помощью предлагаемого устройства в автоматическом режиме было установлено, что форма спектров излучения образца с вероятностью 78% соответствуют диагнозу DS: Туберкулезный сакроилеит. По результатам диагностики было назначено 4 противотуберкулезных препарата по первой схеме. Спустя месяц в рамках мониторинга лечения была повторно взята кровь на флуоресцентный анализ, который показал, что проводимая химиотерапия не эффективна (интенсивность сигнала возросла по всему спектру). Относительная интенсивность флуоресценции контролировалась по интенсивности пика рассеянного лазерного излучения. Было выдвинуто предположение, что у больного имеется лекарственная устойчивость к противотуберкулезным препаратам. У пациента рифампицин был заменен на рифабутин, пиразинамид на протионамид, а этамбутол заменен на авелокс. Через 3 недели вновь была взята кровь на флуоресцентный анализ, который показал резкое падение интенсивности флуоресценции, что свидетельствует о правильности подбора проводимой противотуберкулезной химиотерапии и наличии лекарственной устойчивости. Все результаты флуоресцентной диагностики спустя несколько дней были подтверждены классическими клиническими методами.

Похожие патенты RU2511262C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ФЛУОРЕСЦЕНТНОЙ НАВИГАЦИИ В НЕЙРОХИРУРГИИ 2017
  • Лощенов Максим Викторович
  • Потапов Александр Александрович
  • Бородкин Александр Викторович
  • Гольбин Денис Александрович
  • Горяйнов Сергей Алексеевич
  • Линьков Кирилл Геннадьевич
  • Лощенов Виктор Борисович
RU2661029C1
УСТРОЙСТВО ДЛЯ ОПТИЧЕСКОЙ ДИАГНОСТИКИ КРОВОСНАБЖЕНИЯ И ЖИЗНЕОБЕСПЕЧЕНИЯ БИОЛОГИЧЕСКИХ ТКАНЕЙ 2017
  • Дрёмин Виктор Владимирович
  • Маковик Ирина Николаевна
  • Жеребцов Евгений Андреевич
  • Жеребцова Ангелина Ивановна
  • Жарких Елена Валерьевна
  • Потапова Елена Владимировна
  • Дунаев Андрей Валерьевич
RU2663938C1
СПОСОБ ОПРЕДЕЛЕНИЯ И ИДЕНТИФИКАЦИИ БИОЛОГИЧЕСКИХ МИКРООБЪЕКТОВ И ИХ НАНОКОМПОНЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Александров Михаил Тимофеевич
  • Васильев Евгений Николаевич
  • Миланич Александр Иванович
  • Смирнов Михаил Олегович
RU2406078C2
СПОСОБ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Вовк С.М.
  • Кондратов С.В.
  • Наумов С.А.
  • Олефиренко С.С.
  • Петров В.И.
  • Пушкарев С.В.
  • Смолянинов Е.С.
  • Стафеев С.А.
RU2184486C2
Портативное устройство для мониторинга стрессовых состояний растений 2021
  • Смирнов Александр Анатольевич
  • Прошкин Юрий Алексеевич
  • Качан Сергей Александрович
  • Довлатов Игорь Мамедяревич
  • Соколов Александр Вячеславович
RU2775493C1
Устройство флуоресцентно-отражательной спектроскопии для диагностики очаговых и диффузных новообразований при проведении тонкоигольной пункционно-аспирационной биопсии 2018
  • Мамошин Андриан Валерьевич
  • Потапова Елена Владимировна
  • Дрёмин Виктор Владимирович
  • Жеребцов Евгений Андреевич
  • Кандурова Ксения Юрьевна
  • Дунаев Андрей Валерьевич
RU2709830C1
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ С ВОЗМОЖНОСТЬЮ ОДНОВРЕМЕННОГО СПЕКТРАЛЬНО-ФЛУОРЕСЦЕНТНОГО КОНТРОЛЯ ФОТОБЛИЧИНГА ФОТОСЕНСИБИЛИЗАТОРА 2021
  • Эфендиев Канамат Темботович
  • Алексеева Полина Михайловна
  • Ширяев Артем Анатольевич
  • Лощенов Виктор Борисович
RU2777486C1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ МИКРОБОВ И СЛОЖНЫХ АМИНОКИСЛОТ 2007
  • Александров Михаил Тимофеевич
  • Васильев Евгений Николаевич
  • Воропаева Маргарита Ивановна
  • Гапоненко Олег Геннадьевич
  • Иванова Мария Александровна
  • Кузьмин Геннадий Петрович
  • Макарова Мария Витальевна
  • Милонич Александр Иванович
  • Хоменко Владимир Александрович
RU2362145C2
ОПТОВОЛОКОННЫЙ ФЛУОРИМЕТР С ПОГРУЖАЕМОЙ ТЕРМОКАМЕРОЙ 2019
  • Вознесенский Сергей Серофимович
  • Гамаюнов Евгений Леонидович
  • Попик Александр Юрьевич
RU2739968C1
УСТРОЙСТВО ДЛЯ ПОДВОДНОГО РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА 2013
  • Бахвалов Алексей Сергеевич
  • Елохин Владимир Александрович
  • Ершов Тимофей Дмитриевич
  • Коробейников Сергей Иванович
  • Николаев Валерий Иванович
  • Трусов Андрей Аркадьевич
  • Чижова Екатерина Викторовна
RU2542642C1

Иллюстрации к изобретению RU 2 511 262 C2

Реферат патента 2014 года СПОСОБ МОНИТОРИНГА ЛЕЧЕНИЯ ЗАБОЛЕВАНИЯ, ВКЛЮЧАЮЩИЙ ФЛУОРЕСЦЕНТНУЮ ДИАГНОСТИКУ ЗАБОЛЕВАНИЯ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Группа изобретений относится к области лабораторной диагностики и может быть использована для диагностики и мониторинга лечения различных заболеваний. Способ мониторинга лечения заболевания включает возбуждение центров флуоресценции образца биологической жидкости путем его облучения излучением, по крайнем мере, двух длин волн и регистрацию, соответственно, по крайней мере, двух спектров идущего от образца излучения. Наличие, степень и характер заболевания идентифицируют путем выявления особенностей спектров идущего от образца излучения по сравнению с соответствующими спектрами эталонного (здорового) образца и типовыми спектрами распространенных заболеваний, причем сравнение спектров проводят в диапазоне, включающем линию рассеянного лазерного излучения. Группа изобретений относится также к устройству для осуществления указанного способа, содержащему лазеры с различными рабочими длинами волн, оптоволоконные линии, собранные со стороны образца в пучок с общим наконечником, спектрометр, блок управления и компьютер для обработки спектров флуоресценции. Спектрометр содержит коллиматор со сменными светофильтрами, дифракционную решетку и ПЗС-матрицу, соединенную с блоком предварительной обработки сигнала. Блок управления управляет включением/выключением лазеров и установкой в коллиматоре соответствующего включенному лазеру светофильтра. Группа изобретений позволяет повысить скорость и точность получения результатов анализа. 2 н. и 5 з.п. ф-лы, 1 ил., 1 пр.

Формула изобретения RU 2 511 262 C2

1. Способ мониторинга лечения заболевания, включающий флуоресцентную диагностику заболевания и заключающийся в возбуждении различных центров флуоресценции образца путем его облучения лазерным излучением, по крайнем мере, двух длин волн в ультрафиолетовом, видимом и/или инфракрасном спектральных диапазонах, и регистрации соответственно, по крайней мере, двух спектров идущего от образца излучения, отличающийся тем, что в качестве образца используют биологическую жидкость, полученную от пациента, а наличие, степень и характер заболевания идентифицируют путем выявления особенностей спектров идущего от образца излучения, полученных при различном возбуждении, по сравнению с соответствующими спектрами эталонного образца, выбранного в качестве здорового, и типовыми спектрами наиболее распространенных заболеваний, при этом для проведения мониторинга лечения измерения проводят для одного и того же пациента через различные промежутки времени, а сравнение спектров проводят в диапазоне, включающем линию рассеянного лазерного излучения.

2. Способ по п.1, отличающийся тем, что в качестве биологической жидкости используют кровь, плазму крови, мочу, гной и/или плевральную жидкость.

3. Способ по п.1, отличающийся тем, что дополнительно регистрируют спектр пропускания образца, проводят его сравнение со спектром пропускания эталонного образца и используют выявленные особенности спектра пропускания в качестве дополнительного параметра для идентификации наличия, степени и характера заболевания.

4. Устройство для осуществления способа по п.1, содержащее, по крайней мере, два источника возбуждающего излучения в виде лазеров с различными рабочими длинами волн в ультрафиолетовом, видимом и/или инфракрасном спектральных диапазонах, оптоволоконные линии, спектрометр с блоком предварительной обработки сигнала, блок управления и компьютер с установленным на нем программным обеспечением для обработки спектров флуоресценции, получаемых от блока предварительной обработки сигнала, отличающееся тем, что передающие оптоволоконные линии, идущие от каждого лазера к образцу, а также приемная оптоволоконная линия, идущая от образца к спектрометру, со стороны образца собраны в пучок с общим наконечником, спектрометр содержит коллиматор со сменными светофильтрами, дифракционную решетку и ПЗС-матрицу, соединенную с блоком предварительной обработки сигнала, а блок управления, получающий командные сигналы от компьютера, выполнен с возможностью управления включением/выключением лазеров и установкой в коллиматоре соответствующего включенному лазеру светофильтра.

5. Устройство по п.4, отличающееся тем, что перед наконечником оптоволоконных линий установлен подвижный держатель образцов, выполненный с возможностью установки перед наконечником одного из образцов в соответствии с сигналом от блока управления.

6. Устройство по п.5, отличающееся тем, что с противоположной от наконечника стороны держателя установлен источник излучения со сплошным спектром для исследования пропускания образца.

7. Устройство по п.5, отличающееся тем, что держатель образцов расположен в теплоизолированном кожухе, который оснащен термостатом, подключенным к блоку управления.

Документы, цитированные в отчете о поиске Патент 2014 года RU2511262C2

RU 94010321 A1, 20.06.1996
СПОСОБ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКОГО ЗАБОЛЕВАНИЯ 1994
  • Антипов А.Н.
  • Ламекин В.Ф.
  • Пожидаев Е.Д.
  • Пак Д.Д.
  • Орлов А.П.
RU2108577C1
Прибор для определения размеров деталей 1933
  • Пучков К.В.
  • Ярыгин В.Я.
SU35440A1
ДИАГНОСТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ИЗМЕРЕНИЯ МЕДИКО-БИОЛОГИЧЕСКИХ ПАРАМЕТРОВ КОЖИ И СЛИЗИСТЫХ ОБОЛОЧЕК IN VIVO 2007
  • Рогаткин Дмитрий Алексеевич
  • Сидоров Виктор Васильевич
  • Шумский Вячеслав Иванович
RU2337608C1
Способ измерения магнитного момента магнитов или магнитных систем картушек магнитных компасов 1953
  • Горбик А.И.
SU103921A1
US 6124597 A, 26.09.2000

RU 2 511 262 C2

Авторы

Борискова Екатерина Юрьевна

Гапоненко Олег Геннадьевич

Данилков Дмитрий Вячеславович

Журавлева Валентина Петровна

Ломов Антон Сергеевич

Хоменко Владимир Александрович

Чугунова Марина Михайловна

Даты

2014-04-10Публикация

2012-05-29Подача