СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОГЛИНОЗЕМИСТЫХ ШЛАКОВ АЛЮМОТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ФЕРРОСПЛАВОВ Российский патент 2014 года по МПК C22B7/04 B03B9/04 

Описание патента на изобретение RU2511556C1

Изобретение относится к горной, металлургической и строительной промышленности и может быть использовано при утилизации (безотходной переработке) шлаков ферросплавного производства.

Известен способ переработки отвальных шлаков, в частности сталеплавильных, включающий предварительную выборку крупного металлического скрапа, стадийное дробление просеянного шлака, отбор металла на каждой стадии посредством рассеивания на перфорированной поверхности, магнитную сепарацию надрешетного шлака или ручную выборку металла из надрешетного шлака и воздушную сепарацию на каждой стадии дробления посредством перемещения материала в потоке воздуха с извлечением наименее плотной неметаллической составляющей шлака пылевидной фракции (-0,08 мм), после чего осуществляют магнитную сепарацию надрешетного шлака или ручную выборку металла из надрешетного шлака. После заключительной стадии дробления перед воздушной сепарацией проводят избирательное измельчение неметаллической составляющей шлака. В процессе переработки обеспечивают постадийный перевод всей неметаллической составляющей перерабатываемого шлака в пылевидную фракцию (-0,08 мм) и извлечение ее потоком воздуха из шлака на каждой стадии. Перед каждой стадией дробления материал подвергают сушке (Патент RU №2358027, МПК C22B 7/04, C04B 7/19, опубл. 10.06.2009 г.).

Данный способ является высоко затратным, т.к. требуются большие энергетические затраты на многостадийную воздушную и электромагнитную сепарацию и на измельчение всей шлаковой фазы до фракции -0,08 мм (в пыль). Кроме того, затруднено извлечение хрупкой металлической фазы из фракций менее 0,08 мм, что ухудшает качество производимого цемента (клинкера).

Наиболее близким по технологической сущности является способ переработки металлургических шлаков, включающий предварительное грохочение с выделением негабаритных кусков шлака, магнитную сепарацию первым барабанным железоотделителем, дробление шлака в щековой дробилке, при этом дробленый продукт подвергают с применением второго барабанного железоотделителя магнитной сепарации с разделением магнитного продукта и немагнитного продукта и грохочение немагнитного продукта. Дополнительно проводят дробление на центробежно-ударной дробилке и магнитную сепарацию магнитного продукта или магнитного продукта и надрешетных продуктов грохочения немагнитного продукта, выделение товарного продукта и его классификацию по крупности и возврат немагнитных продуктов дополнительного дробления ко второму барабанному железоотделителю. Магнитную сепарацию перед и после дополнительного дробления проводят с помощью подвесных саморазгружающихся железоотделителей, а выделенный товарный магнитный продукт подвергают грохочению на грохоте с получением двух фракционных магнитных продуктов (Патент RU №2377324, МПК C22B 7/04, B03B 9/04, опубл. 27.12.2009 г.).

Данный способ обеспечивает переработку текущих и отвальных доменных и сталеплавильных шлаков, в том числе низкообогащенного отвального некондиционного магнитного продукта, с получением дешевого железорудного сырья с качественными характеристиками, высококачественного щебня фракций 5-10 мм, 10-20 мм, или смеси фракций 5-20 мм, 20-40 мм, 40-70 мм и песка фракции 0-5 мм, однако при переработке шлаков ферросплавного производства барабанные и подвесные железоотделители не обеспечивают эффективного извлечения металлической фазы ферросплавов (Fe-Ti, Fe-Nb, Fe-Cr и т.п., особенно мелких корольков металла) из-за недостаточной (а именно, низкой) напряженности магнитного поля. В результате этого выход товарного продукта - порошков ферросплавов не высок, а немагнитная фракция содержит повышенное количество металлической фазы, что резко ухудшает товарные качества клинкера (невысокая тугоплавкость получаемых из него глиноземистых цементов).

Задачей изобретения является создание безотходной технологии переработки шлаков ферросплавного производства.

Технический результат, который будет достигнут от использования данного изобретения заключается в снижении энергозатрат на переработку шлаков и получение более качественного товарного продукта (сырья для производства высококачественного клинкера).

Технический результат достигается тем, что в способе переработки высокоглиноземистых шлаков алюмотермического производства ферросплавов, включающем предварительное грохочение с выделением негабаритных кусков, сепарацию с выделением металлоконцентрата, дробление шлака, грохочение, дополнительное дробление и магнитную сепарацию с выделением магнитного и немагнитного продукта, дробление осуществляют до фракции -10,0+0,0 мм с последующим его грохочением на три фракции -10,0+1,0 мм, -1,0+0,315 мм и -0,315+0,0 мм, фракцию -10,0+1,0 мм подвергают дополнительному дроблению и возвращают на грохочение, затем каждую из полученных двух фракций -1,0+0,315 мм и -0,3+0,0 мм раздельно подвергают сушке, а затем двумя разделенными потоками подвергают сначала электросепарации с разделением на проводниковые и непроводниковые фракции, после чего каждую из полученных фракций подвергают последовательно сначала слабомагнитной, а затем сильномагнитной сепарации с выделением сильномагнитной фракции - железного скрапа, крупной и мелкой фракций металлической фазы ферросплавов (Fe-Ti, Fe-Nb, Fe-Cr и т.п.) и немагнитной непроводниковой фракции - высокоглиноземистого концентрата (высокоглиноземистого, сырья для последующего производства клинкера).

Сущность изобретения заключается в повышенном извлечении металлической фазы (Fe-Ti, Fe-Nb, Fe-Cr и т.п.) из высокоглиноземистых шлаков за счет совместного использования электростатических и электромагнитных полей высокой напряженности.

Дополнительное дробление и магнитная сепарация с выделением магнитного и немагнитного продукта до фракции -10,0+0,0 мм с последующим грохочением немагнитного продукта на три фракции -10,0+1,0 мм, -1,0+0,315 мм и -0,315+0,0 мм, доизмельчение (дополнительное дробление) фракции -10,0+1,0 мм и возврат на грохочение, затем раздельная сушка каждой из полученных двух фракций -1,0+0,315 мм и -0,315+0,0 мм двумя разделенными потоками с последующей электросепарацией с разделением на проводниковые и непроводниковые фракции, затем слабомагнитная, а затем сильномагнитная сепарация каждой из полученных фракций с выделением сильномагнитной фракции - железного скрапа, крупной и мелкой фракции металлической фазы ферросплавов и немагнитной непроводниковой фракции -высокоглиноземистого сырья для производства клинкера (высокоглиноземистого концентрата) обеспечивает получение высококачественных товарных продуктов и значительно снижает энергозатраты на переработку высокоглиноземистых шлаков алюмотермического производства ферросплавов.

Из анализа научно-технической и патентной литературы заявляемой совокупности признаков, обеспечивающих безотходную переработку шлаков алюмотермического производства ферросплавов с получением высококачественных товарных продуктов, не выявлено, что позволяет сделать вывод о соответствии заявляемого технического решения критериям «новизна» и «изобретательский уровень».

Изобретение осуществляется следующим образом (см. фигуру-схему).

Исходный шлак текущего производства ферросплавов из приемного бункера поступает на вибропитатель с колошниковой решеткой, где отделяют куски крупностью 300 мм, которые поступают на склад негабаритов или на участок дробления. Из подрешетного продукта отделяют крупные куски ферросплава товарного сорта ручной выборкой. При большой производительности эта операция может быть осуществлена на сепараторах или фотометрически (на схеме не показано). Затем шлак поступает на среднее и мелкое дробление (см. схему). После сухой слабомагнитной сепарации дробленый продукт поступает на грохот(ы), где выделяют 3 фракции: -10+1,0 мм, -1,0+0,315 мм и -0,315+0,0 мм. Фракцию -10+1,0 мм доизмельчают и снова подают на грохочение. Выделенные фракции -1,0+0,315 мм и -0,315+0,0 мм раздельными потоками поступают на сушку, а затем на электросепарацию. После электросепарации проводниковые фракции раздельными потоками поступают на сухую магнитную сепарацию в слабом магнитном поле. Непроводниковые фракции объединяют и также подвергают сухой магнитной сепарации в слабом магнитном поле, после чего выделяют магнитные фракции товарного продукта - железный скрап. Слабо магнитные фракции после сухой магнитной сепарации поступают на высокоградиентную магнитную сепарацию с последующим выделением товарного продукта: концентрата ферросплава 2-х фракций - крупного и мелкого и высокоглиноземистого концентрата.

Качественные характеристики продукта, полученного заявляемым способом и способом по прототипу, приведены в таблице.

Таблица Результаты переработки шлака алюмотермического производства ферротитана. Способ Полученные Выход, Содержание, % Извле переработки продукты % Ti Al2O3 Fe CaO MgO SiO2 чение Ti, % По Концентрат 5,12 22,00 18,70 прототипу ВСМС (металлическая фаза) Хвосты ВСМС (шлаковая фаза) 94,88 5,18 81,30 Исходный шлак 100,00 6,02 100,00 По Концентрат 4,42 34,40 7,80 46,40 5,30 1,33 6,30 25,30 предлага совместной емому электрической изобретению и магнитной Сепарации (металлофаза) Хвосты обогащения (шлаковая фаза) 95,58 4,71 63,30 1,43 22,50 4,76 1,72 74,70 Исходный шлак 100,00 6,02 60,80 3,41 21,70 4,61 1,92 100,00 ГОСТ 4761-91 ФТи35 с5 100,00 28-46 8 5-8

Как видно из Таблицы, при переработке шлака (ферросплавного производства) по предлагаемому изобретению получается 4,42% по выходу концентрата металлофазы с содержанием Ti 34,4% и Fe 46,4%, что по всем компонентам удовлетворяет ГОСТу на порошок ферротитана марки ФТи35с5.

По способу-прототипу концентрат металлофазы не удовлетворяет ГОСТу прежде всего по титану. Извлечение металлического титана в металлофазу по предлагаемому изобретению также выше и составляет 25,3% (против 18,7% по прототипу).

В хвостах электростатического и магнитного обогащения титан представлен (остался) в виде неэлектропроводной и немагнитной шлаковой фазы, удовлетворяющей требованиям на сырье для производства высокоглиноземистых цементов ВГЦ1 (по ГОСТ 23464).

Похожие патенты RU2511556C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ШЛАКА 2017
  • Ходос Николай Иванович
RU2688789C2
СПОСОБ ОБОГАЩЕНИЯ РУД РЕДКИХ И БЛАГОРОДНЫХ МЕТАЛЛОВ 2000
  • Урванцев А.И.
RU2201289C2
СПОСОБ ОБОГАЩЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 2012
  • Урванцев Анатолий Иванович
  • Урванцев Дмитрий Анатольевич
  • Урванцев Илья Анатольевич
RU2494815C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНОЙ ЗОЛОТОСОДЕРЖАЩЕЙ РУДЫ 2001
  • Урванцев А.И.
RU2198948C2
СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩИХ ШЛАКОВ 1993
  • Урванцев Анатолий Иванович
  • Шмотьев Сергей Федорович
  • Черемисинов Виктор Александрович
  • Шихов Николай Владимирович
  • Журавский Игорь Викторович
  • Мушкетов Андрей Александрович
  • Васильев Виктор Петрович
  • Еланцев Юрий Степанович
RU2023035C1
СПОСОБ ПЕРЕРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ (ВАРИАНТЫ) ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Карпов Анатолий Александрович
  • Филипьев Сергей Николаевич
  • Наумов Николай Викторович
  • Васин Евгений Александрович
  • Камерцель Владимир Генрихович
  • Колотыгин Алексей Тимофеевич
  • Свистун Евгений Анатольевич
RU2377324C2
СПОСОБ СУХОГО ОБОГАЩЕНИЯ СТЕКОЛЬНЫХ ПЕСКОВ ДЛЯ ПОЛУЧЕНИЯ КВАРЦЕВОГО КОНЦЕНТРАТА 2010
  • Антипов Виктор Петрович
  • Горбунов Валерий Алексеевич
  • Кальченко Владимир Алексеевич
  • Мамина Наталья Арсеньевна
  • Парюшкина Ольга Владимировна
  • Терехин Сергей Иванович
RU2456101C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ КРАСНЫХ ШЛАМОВ 2013
  • Газалеева Галина Ивановна
  • Сопина Нина Александровна
  • Орлов Станислав Львович
  • Мушкетов Андрей Александрович
  • Шешуков Олег Юрьевич
  • Дмитриев Андрей Николаевич
RU2528918C1
СПОСОБ ПЕРЕРАБОТКИ ОТВАЛЬНОГО РАСПАДАЮЩЕГОСЯ ШЛАКА 2006
  • Привалов Олег Евгеньевич
  • Разин Александр Борисович
  • Петлюх Петр Степанович
  • Есенжулов Арман Бекетович
  • Карманов Рахат Тулепбергенович
  • Демин Борис Леонидович
  • Грабеклис Альфред Альфредович
RU2347622C2
СПОСОБ ОБОГАЩЕНИЯ ХРОМСОДЕРЖАЩИХ ОТХОДОВ ФЕРРОСПЛАВНОГО ПРОИЗВОДСТВА 1998
  • Семидалов С.Ю.
  • Невский Ю.Н.
  • Бушуева Н.Ю.
  • Сергеев Г.И.
  • Мельниченко А.Ф.
  • Рогов В.М.
RU2136376C1

Иллюстрации к изобретению RU 2 511 556 C1

Реферат патента 2014 года СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОГЛИНОЗЕМИСТЫХ ШЛАКОВ АЛЮМОТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ФЕРРОСПЛАВОВ

Изобретение относится к горной, металлургической и строительной промышленности и может быть использовано при утилизации шлаков ферросплавного производства. В способе дробление шлака осуществляют до фракции -10,0+0,0 мм с последующим его грохочением на три фракции: -10,0+1,0 мм, -1,0+0,315 мм и -0,315+0,0 мм, причем фракцию -10,0+1,0 мм подвергают дополнительному дроблению и возвращают на грохочение, затем каждую из двух фракций: -1,0+0,315 мм и -0,315+0,0 мм раздельно сушат, а затем двумя разделенными потоками подвергают сначала электросепарации с разделением на проводниковые и непроводниковые фракции, затем каждую из полученных фракций подвергают последовательно сначала слабомагнитной, а затем сильномагнитной сепарации с выделением сильномагнитной фракции в виде железного скрапа и крупной и мелкой фракций металлической фазы ферросплавов и выделением немагнитной непроводниковой фракции в виде высокоглиноземистого концентрата. Изобретение позволяет получать 4,42% по выходу концентрата металлофазы с содержанием Ti 34,4% и Fe 46,4%, что по всем компонентам удовлетворяет ГОСТу на порошок ферротитана марки ФТи35с5. 1 табл, 1 ил.

Формула изобретения RU 2 511 556 C1

Способ переработки высокоглиноземистых шлаков алюмотермического производства ферросплавов, включающий предварительное грохочение с выделением негабаритных кусков, сепарацию с выделением металлоконцентрата, дробление шлака, грохочение, дополнительное дробление и магнитную сепарацию с выделением магнитного и немагнитного продуктов, отличающийся тем, что дробление шлака осуществляют до фракции -10,0+0,0 мм с последующим его грохочением на три фракции: -10,0+1,0 мм, -1,0+0,315 мм и -0,315 +0,0 мм, причем фракцию -10,0+1,0 мм подвергают дополнительному дроблению и возвращают на грохочение, затем каждую из двух фракций: -1,0+0,315 мм и -0,315+0,0 мм раздельно сушат, а затем двумя разделенными потоками подвергают сначала электросепарации с разделением на проводниковые и непроводниковые фракции, затем каждую из полученных фракций подвергают последовательно сначала слабомагнитной, а затем сильномагнитной сепарации с выделением сильномагнитной фракции в виде железного скрапа и крупной и мелкой фракций металлической фазы ферросплавов и выделением немагнитной непроводниковой фракции в виде высокоглиноземистого концентрата.

Документы, цитированные в отчете о поиске Патент 2014 года RU2511556C1

СПОСОБ ПЕРЕРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ (ВАРИАНТЫ) ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Карпов Анатолий Александрович
  • Филипьев Сергей Николаевич
  • Наумов Николай Викторович
  • Васин Евгений Александрович
  • Камерцель Владимир Генрихович
  • Колотыгин Алексей Тимофеевич
  • Свистун Евгений Анатольевич
RU2377324C2
Поточная линия для сепарации и сортирования отвальных металлургических шлаков 1978
  • Кривоносов Виталий Иванович
  • Бормотов Виктор Иванович
  • Роменец Владимир Андреевич
  • Ширяев Петр Андреевич
  • Вегман Евгений Феликсович
  • Федотов Анатолий Алексеевич
  • Золотарев Федор Николаевич
  • Шевченко Валерий Ильич
SU759132A1
СПОСОБ ПЕРЕРАБОТКИ ОТВАЛЬНЫХ ШЛАКОВ 1999
  • Комаров В.А.
  • Плеханов А.Ю.
  • Трофимов А.Б.
  • Милованов И.Ф.
  • Никитин Г.С.
RU2145361C1
Способ модуляции амплитуды высокочастотного тока лампового генератора 1929
  • Мандельштам Л.И.
  • Папалекси Н.Д.
SU13755A1
WO 9518871 A1, 13.07.1995

RU 2 511 556 C1

Авторы

Урванцев Анатолий Иванович

Урванцев Илья Анатольевич

Хохлов Александр Матвеевич

Дианов Андрей Олегович

Даты

2014-04-10Публикация

2012-10-22Подача