СПОСОБ ПОЛУЧЕНИЯ ГЛИКОЛИДА Российский патент 2014 года по МПК C07D319/12 

Описание патента на изобретение RU2512306C1

Изобретение относится к способам получения гликолида, являющегося основным сырьем для получения полигликолида (полигликолевой кислоты) и его сополимеров, которые являются биоразлагаемыми полимерами и находят широкое применение в медицине, производстве биодеградируемых материалов для упаковки продуктов, тары, одноразовых изделий и т.п.

Известен способ синтеза гликолида из монохлоруксусной кислоты (А.П. Баталов, Г.А. Ростокин, В.А. Савин и др. Синтез и полимеризация гликолида. Физико-химические основы синтеза и переработки полимеров. Выпуск 1, 1976). Описан лабораторный способ синтеза гликолида из натриевой соли монохлоруксусной кислоты. Для синтеза использовали установку без дозатора и мешалки.

Натриевую соль хлоруксусной кислоты загружали в реактор, нагретый до температуры 523 К. По мере оплавления соли включали вакуум-насос и в вакууме происходила перегонка образовавшегося гликолида. Выход гликолида-сырца составлял 75%. Разложение натриевой соли хлоруксусной кислоты в присутствии трехокиси сурьмы происходило более целенаправленно. В этом случае гликолид-сырец получался более чистым, в результате чего выход чистого гликолида на 10% выше, чем в отсутствие трехокиси сурьмы.

Недостатком описанного метода является большое количество примесей, содержащих хлор и олигомеры гликолевой кислоты, что приводит к большим потерям при доведении гликолида до товарной чистоты методом двойной перекристаллизации в этилацетате. Выход чистого гликолида снижается до 40-45%.

Известен способ получения гликолида (патент РФ №1540222, С07С 319/12, опубл. 20.04.1996). Изобретение относится к эфирам гидроксилсодержащей карбоновой кислоты, в частности к получению гликолида-мономера для синтеза полимеров медицинского назначения. С целью интенсификации процесса монохлоруксусную кислоту нейтрализуют NaOH или KOH в эквимолярном соотношении с получением реакционной массы, содержащей соответствующую соль монохлоруксусной кислоты. Последнюю нагревают до 138-150°C с одновременной отгонкой воды. Затем добавляют органический растворитель, выбранный из группы одноатомных спиртов С1-С4 или кетонов формулы R1-СО=R2, где R1 и R2 - одинаковые или различные алкильные радикалы С1-С3, в количестве 0,8-1,6 объема на 1 массовую долю монохлоруксусной кислоты. Отделяют осадок и отгоняют органический растворитель при температуре в массе до 160-175°C, а затем реакционную воду при температуре до 190-220°C и остаточном давлении 6,67-10,67 кПа с последующим отделением олигоэфира, который деполимеризуют в роторно-пленочном испарителе. Изобретение относится к получению полупродуктов для синтеза полимера, а именно к способу получения гликолида мономера для синтеза полимеров медицинского назначения.

Недостатком указанного прототипа является наличие в получаемом гликолиде-сырце большого количества загрязняющих компонентов, что требует дополнительных стадий очистки для дальнейшего получения гликолида, применяемого в синтезе полимеров медицинского назначения.

Задачей настоящего изобретения является разработка способа получения гликолида из гликолевой кислоты посредством проведения реакции деполимеризации олигомера и конденсированием паров гликолида при повышенной температуре (270-280°C) и в вакууме (<20 мм рт.ст.), что позволяет получить выход гликолида-сырца 90% с получением гликолида после очистки (перекристаллизации) достаточной чистоты для использования при синтезе полимеров медицинского назначения.

Поставленная задача решается тем, что способ получения гликолида, включающий стадию олигомеризации и деполимеризации при нагревании в вакууме, отличается от прототипа тем, что раствор 65%-ной гликолевой кислоты помещается в выпарную колбу тонкопленочного ротационного испарителя при постоянной подаче азота (0,5 л/мин) с 0,3-0,5% массовых катализатора (ZnO), нагревается до 120°C при атмосферном давлении, с последующим охлаждением полученного дистиллята в холодильнике водой и конденсацией, охлаждением реакционной массы олигомера гликолевой кислоты и добавлением 0,5-1,5% массовых катализатора (Sb2O3), помещением полученной смеси в установку для перегонки в вакууме при температуре 270-280°C.

Процесс отгонки воды из 1000 см3 65% гликолевой кислоты осуществляют при 120°C в течение 3-4 часов в тонкопленочном ротационном испарителе. При получении объема дистиллята 120-125 см3 в установке создают вакуум 300 мм рт.ст., увеличивают температуру раствора до 140-150°C и продолжают отгонку воды. Несконденсировавшиеся пары, отсасываемые мембранным вакуумным насосом LABOPORTN 820.3. FT.18, проходят последовательно ловушку, охлаждаемую жидким азотом, и ловушку, наполненную прокаленным силикагелем, и далее сбрасываются под тягу. При получении общего объема дистиллята 225-230 см3 выключается нагрев, сбрасывается вакуум и для проведения реакции олигомеризации в реакционную массу вносят катализатор (ZnO) 0,3-0,5% массовых. В процессе реакции олигомеризации продолжают отгонку воды, выделяющуюся при конденсации гликолевой кислоты, при нагревании смеси до 175-185°C и вакууме до 150 мм рт.ст.

После прекращения отгонки воды (4-6 часов) отключается нагрев ротационного испарителя, сбрасывается вакуум и перекрывается подача азота. Реакционная масса олигомера (600-640 см3) выливается тонким слоем в эмалированный поддон. Конденсат летучих веществ сливается из приемника в емкость для временного хранения.

Застывшая масса олигомера взвешивается, к ней добавляется 0,5-1,5% массовых катализатора (Sb2O3) и смесь тщательно перетирается в ступке.

Полученная смесь загружается в установку для перегонки в вакууме, продувается азотом, включается нагрев до 270-280°C электромагнитной мешалки и создается вакуум 10-15 мм рт.ст. Перемешивание реакционной массы осуществляется барботированием сухим азотом. Через час нагрева олигомера начинает отгоняться гликолид в виде прозрачного или желтоватого масла. Приемник дистиллята охлаждается льдом. Процесс продолжался до окончания выделения гликолида-сырца.

Полученный гликолид-сырец объемом 520-550 см3 кристаллизовался в приемной колбе, которая затем взвешивалась. В зависимости от качества исходной гликолевой кислоты получался гликолид-сырец с tпл=70-75°C. Выход ~90%.

Для очистки полученного гликолида-сырца от олигомеров, гликолевой кислоты и других примесей он трижды перекристаллизовывался из этилацетата и промывался этим же растворителем. Первая перекристаллизация гликолида-сырца проводилась в стандартной установке, состоящей из круглодонной колбы, обратного холодильника и колбонагревателя ES-4100. Для этого полученный гликолид-сырец переносился в круглодонную колбу и к нему добавлялся маточник третьей перекристаллизации в количестве ≈2 мл/г. Кипячение массы осуществлялось в течение 10 минут. При наличии твердых остатков в растворе проводилось горячее фильтрование. Для фильтрации используют фильтровальную бумагу ФБ и лабораторную установку фильтрации в вакууме, включая колбу Бунзена, воронку Бюхнера, герметизирующие соединения, вакуумный шланг и водоструйный насос. Вторая и третья перекристаллизация проводилась аналогично, но со свежим этилацетатом.

Сушка продукта (300-350 г) проводилась в вакуумном сушильном шкафу, под азотной подушкой, при температуре 45-50°C. Получаются белые кристаллы гликолида с температурой плавления 83,8-85,0°C. Дальнейшее хранение очищенного гликолида осуществлялось без доступа воздуха и паров воды.

Получаемый гликолид может быть использован как для получения высокомолекулярного полигликолида (полигликолевой кислоты), имеющего обширное самостоятельное применение, так и для получения различных сополимеров, в особенности, сополимера лактида и гликолида, используемого для получения биоразлагаемого шовного материала.

Хроматограмма полученного гликолида (рисунок 1).

Время выхода 3,6 мин.

Время выхода гликолевой кислоты (в качестве примеси) 2,9 мин. Не наблюдается на хроматограмме.

Похожие патенты RU2512306C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГЛИКОЛИДА 1987
  • Адамов А.А.
  • Нестерова Р.Г.
  • Сосонкин И.М.
  • Поляков Д.К.
  • Широбокова О.И.
  • Иванова Н.В.
  • Черняк Н.А.
SU1540222A1
СПОСОБ ПОЛУЧЕНИЯ ГЛИКОЛИДА 2015
  • Кузнецов Василий Алексеевич
  • Объедкова Светлана Александровна
  • Михайлов Геннадий Дмитриевич
RU2576038C1
СПОСОБ ПОЛУЧЕНИЯ ГЛИКОЛИДА ИЗ МОДИФИЦИРОВАННЫХ ОЛИГОМЕРОВ ГЛИКОЛЕВОЙ КИСЛОТЫ 2017
  • Ботвин Владимир Викторович
  • Латыпов Александр Данисович
  • Филимошкин Анатолий Георгиевич
RU2660652C1
СПОСОБ ПОЛУЧЕНИЯ L-ЛАКТИДА 2011
  • Швец Валерий Федорович
  • Козловский Роман Анатольевич
  • Хлопов Дмитрий Сергеевич
  • Козловский Иван Анатольевич
  • Сучков Юрий Павлович
RU2460726C1
КАМЕРНЫЙ МОДУЛЬ РЕАКТОРА СИНТЕЗА ГЛИКОЛИДА И ЛАКТИДА 2013
  • Бабкина Ольга Владимировна
  • Алексеенко Кира Викторовна
  • Алексеенко Алексей Викторович
  • Приступа Максим Николаевич
RU2531942C1
Способ переработки высококипящих побочных продуктов процесса получения этриола 2016
  • Марочкин Дмитрий Вячеславович
  • Носков Юрий Геннадьевич
  • Болотов Павел Михайлович
  • Костин Андрей Михайлович
  • Крон Татьяна Евгеньевна
  • Корнеева Галина Александровна
RU2616004C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ ЛАКТИДА ИЗ ПОЛИЛАКТИДА ИЛИ ГЛИКОЛИДА ИЗ ПОЛИГЛИКОЛИДА 2012
  • Хаген Райнер
RU2602820C2
Способ получения сложных полиэфиров 1989
  • Ходжемиров Владимир Александрович
  • Власова Татьяна Викторовна
  • Поляков Дмитрий Константинович
SU1685952A1
СПОСОБ ПОЛУЧЕНИЯ N-ДИОКСАНОНА 1992
  • Адамов А.А.
  • Гоглева О.В.
  • Фрейдлин Г.Н.
RU2042672C1
Способ очистки лактида от инициирующих примесей 2023
  • Морозов Александр Геннадьевич
  • Разборов Данила Александрович
  • Федюшкин Игорь Леонидович
RU2816655C1

Иллюстрации к изобретению RU 2 512 306 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ГЛИКОЛИДА

Изобретение относится к способу получения гликолида, являющегося основным сырьем для получения полигликолида (полигликолевой кислоты) и его сополимеров, которые являются биоразлагаемыми полимерами, и находит широкое применение в медицине, производстве биодеградируемых материалов для упаковки продуктов, тары, одноразовых изделий и т.п. Способ заключается в том, что раствор 65%-ной гликолевой кислоты помещается в выпарную колбу тонкопленочного ротационного испарителя при постоянной подаче азота (0,5 л/мин) с 0,3-0,5% массовых катализатора (ZnO), нагревается от 120°С до 185оС при давлении 150-300 мм рт.ст., с последующим охлаждением полученного дистиллята в холодильнике водой и конденсацией, охлаждением реакционной массы олигомера гликолевой кислоты и добавлением 0,5-1,5% массовых катализатора (Sb2О3), помещением полученной смеси в установку для перегонки в вакууме при температуре 270-280°С. Процесс отгонки воды осуществляют в течение 3-4 часов в тонкопленочном ротационном испарителе.1 ил.,1 пр.

Формула изобретения RU 2 512 306 C1

Способ получения гликолида, включающий стадии олигомеризации и деполимеризации при нагревании в вакууме, отличающийся тем, что раствор 65%-ной гликолевой кислоты помещается в выпарную колбу тонкопленочного ротационного испарителя при постоянной подаче азота (0,5 л/мин) с 0,3-0,5% массовых катализатора (ZnO), постепенно нагревается от 120°С до 185°С при давлении 150-300 мм рт.ст., с последующим охлаждением реакционной массы олигомера гликолевой кислоты и добавлением 0,5-1,5% массовых катализатора (Sb2O3), помещением полученной смеси в установку для перегонки в вакууме при температуре 270-280°С.

Документы, цитированные в отчете о поиске Патент 2014 года RU2512306C1

JP 0006172341 A 21.06.1994
СПОСОБ ПОЛУЧЕНИЯ ГЛИКОЛИДА 1987
  • Адамов А.А.
  • Нестерова Р.Г.
  • Сосонкин И.М.
  • Поляков Д.К.
  • Широбокова О.И.
  • Иванова Н.В.
  • Черняк Н.А.
SU1540222A1
СПОСОБ ПОЛУЧЕНИЯ 1,4-ДИОКСАН-2,3-ДИОНА 0
  • Д. М. Деме, А. Ф. Алкснис, Э. Ф. Бейнарович, Я. А. Дундурс, Ч. М. Миклашевич В. О. Озола, Я. А. Сурна, Б. Ф. Бурлуцкий, И. Назмутдинова, С. Г. Желтакова
SU374299A1
WO 02070508 A3 12.09.2002

RU 2 512 306 C1

Авторы

Бабкина Ольга Владимировна

Новиков Виктор Тимофеевич

Даты

2014-04-10Публикация

2012-11-27Подача