Настоящее изобретение относится к области производства катализаторов для получения бутадиена превращением этанола.
Известен катализатор для получения бутадиена из этанола, содержащий смесь оксидов алюминия и магния и обладающий бифункциональным действием - дегидратирующим и дегидрирующим (FR 665917, опубл. 25.09.1929, GB 331482, опубл. 30.06.1930, DE 577630, опубл. 03.06.1933,). Выход бутадиена на данном катализаторе составляет 15-18% на разложенный спирт.
Известен катализатор для получения бутадиена из этанола, представляющий собой различные сочетания диатомита, диоксида циркония, диоксида тория, оксида магния, диоксида кремния, диоксида молибдена, медь (US 2438464, от 23.03.1948). Реакционный цикл на данном катализаторе составляет 0,6÷4,1 часа, при максимальном выходе бутадиена 44,1% от теоретического - теоретический выход составляет 58,7% масс.. (А.П.Крючков. Общая технология синтетических каучуков. М.: Химия, 1969 г., стр.144.).
Известен катализатор для одностадийного способа получения бутадиена, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия; указанные оксиды могут быть модифицированы щелочным металлом и/или оксидами церия, олова или сурьмы (RU 2440962, опубл. бюл. №3 27.01.2012).
Известен также катализатор для получения бутадиена из этанола, содержащий соединения магния и кремния (Applied Catalysis, vol. 43, 1988, №1, р.117-131.).
Наиболее близким (прототип), является катализатор для получения дивинила превращением этанола, содержащий, % масс..: оксид цинка 25-35, диоксид кремния 3-5, оксид магния 3-5, оксид калия 1, γ-оксид алюминия - остальное (RU 2459788, опубл. 27.08.2012). В соответствии с данным изобретением при использовании катализатора, содержащего оксид цинка 25-35% масс.., диоксид кремния 3-5% масс.., оксид магния 3-5% масс.., оксид калия 1% масс.. и γ-оксид алюминия, обеспечивается конверсия этанола 34,7-52,8% при абсолютной избирательности 46-53% масс.. Межрегенерационный пробег 8 или 200 часов в зависимости от варианта осуществления технологического процесса.
Недостатком известных катализаторов, включая прототип, является недостаточная активность и/или недостаточно длительный межрегенерационный пробег, а также ограниченность технологического применения - все известные катализаторы синтеза бутадиена из этанола применялись для варианта процесса на стационарном слое катализатора.
Задачей, решаемой настоящим изобретением, является повышение эффективности работы катализатора: получение высокой конверсии этанола при высокой избирательности по бутадиену, обеспечение длительного и/или непрерывного процесса синтеза с сохранением высокой активности, увеличения вариантов применения катализатора в синтезе бутадиена.
Поставленная задача решается использованием катализатора для получения бутадиена превращением этанола, содержащего соединения магния, алюминия, кремния, цинка, кальция и/или стронция в следующих количествах, считая на оксиды, % масс..:
Катализатор дополнительно может содержать оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0% масс.. и/или портландцемент в количестве 1-20% масс..
Предпочтительнее в качестве соединений магния, алюминия, кремния, цинка, кальция и/или стронция использовать оксиды и/или легко разлагающиеся до оксидов соединения.
Катализатор может быть приготовлен смешением оксидов и/или легко разлагающихся до оксидов соединений магния, алюминия, кремния, цинка, кальция и/или стронция в течение 0,5-2 часов. Оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова, и/или портландцемент добавляются на стадии смешения. К полученной смеси затем добавляется вода до образования пластичной масс.ы, перемешивается в течение 0,5-3 часов, формуется экструзией в гранулы диаметром 2-5 мм. Полученные экструдаты подсушиваются при комнатной температуре 4-10 часов, затем при температуре 100-140°С в течение 6-10 часов и прокаливаются в воздушной среде при температуре 500-600°С в течение 1-4 часов.
Катализатор можно готовить также растворением оксидов и/или гидроксидов магния, цинка, алюминия в серной кислоте с концентрацией 20-30% масс.. с последующим совместным осаждением раствором гидроксида натрия с концентрацией 20-30% масс.. Получаемый осадок фильтруется, промывается водой для удаления ионов натрия и SO4 2-, высушивается при температуре 100-140°С в течение 6-10 часов. Высушенная масс.а помещается в смеситель, куда добавляются остальные компоненты по рецептуре и вода до образования пластичной масс.ы. Последующая технология, включающая перемешивание, формовку, сушку и прокалку, аналогична приготовлению катализатора, описанному выше, из сухих веществ, а именно - в смесителе перемешивание осуществляется в течение 0,5-3 часов, формовка экструзией в гранулы диаметром 2-5 мм, экструдаты подсушиваются при комнатной температуре 4-10 часов, затем при температуре 100-140°С в течение 6-10 часов и прокаливаются в воздушной среде при температуре 500-600°С в течение 1-4 часов.
С использованием предлагаемого катализатора процесс синтеза бутадиена может осуществляться как на неподвижном слое катализатора, так и в кипящем слое катализатора.
При осуществлении способа на неподвижном слое катализатора синтез и регенерация катализатора проводятся в одном аппарате, время осуществления синтеза с сохранением высокой активности составляет 9,5 часов. Регенерация осуществляется кислородсодержащим газом.
Для осуществления процесса в кипящем слое гранулы катализатора измельчаются и отсеивается требуемая фракция. Синтез бутадиена и регенерация мелкодисперсного катализатора может осуществляться в одном аппарате. Предпочтительно процесс синтеза бутадиена и регенерацию мелкодисперсного катализатора осуществлять в разных аппаратах с перемещением катализатора из аппарата синтеза в аппарат регенерации и обратно, с подпиткой свежим катализатором и отведением отработанного катализатора. Процесс может осуществляться на установке, описанной, например, в патенте RU 2156233 (приоритет от 04.08.1999 г., опубликован 20.09.2000 г.). При осуществлении процесса синтеза бутадиена и регенерации мелкодисперсного катализатора в кипящем слое в одном аппарате время осуществления синтеза с сохранением высокой активности составляет также 9,5 часов. При осуществлении процесса синтеза бутадиена и регенерации мелкодисперсного катализатора в кипящем слое в разных аппаратах с перемещением катализатора из аппарата синтеза в аппарат регенерации и обратно, с подпиткой свежим катализатором и отведением отработанного катализатора, процесс может осуществляться сколь угодно долго непрерывно.
Техническим результатом при использовании предлагаемого катализатора является возможность осуществления процесса синтеза бутадиена в различных вариантах - на неподвижном или в кипящем слое катализатора, обеспечение высокой конверсии этанола при высокой избирательности по бутадиену. При этом обеспечивается более длительный реакционный цикл или даже непрерывная работа с высокой активностью. Получение результата обусловлено суммарным сбалансированным действием компонентов катализатора, обладающих дегидрирующим и дегидратирующим действием - основными компонентами кроме бутадиена в реакционной масс.е являются ацетальдегид (образующийся при дегидрировании этанола) и вода.
Изобретение иллюстрируется следующими примерами.
Пример 1.
Оксид магния в количестве 108,63 грамм, оксид алюминия в количестве 11,05 грамм, оксид цинка в количестве 0,17 грамм (количество всех реагентов приведено на основное вещество) растворяются в эквимолярном количестве серной кислоты с концентрацией 23,3% масс.. Полученный раствор осаждается эквимолярным количеством гидроксида натрия с концентрацией 27,4% масс.. Получаемый осадок фильтруется, промывается водой, высушивается при температуре 120°С в течение 8 часов. Высушенная масс.а помещается в смеситель, добавляется 37,4 грамма тонкоизмельченного диоксида кремния и 12,75 грамм тонкоизмельченного оксида кальция и перемешивается в течение 30 минут, затем добавляется вода до образования пластичной масс.ы, перемешивается в течение 2 часов, формуется экструзией в гранулы диаметром 2,5 мм. Полученные экструдаты подсушиваются при комнатной температуре 8 часов, затем при температуре 120°С в течение 6 часов и прокаливаются в воздушной среде при температуре 550°С в течение 2 часов.
Полученный катализатор имеет следующий состав, считая на оксиды, % масс.: оксид магния - 63,9; оксид алюминия - 6,5; оксид кремния - 22,0; оксид цинка - 0,1; оксид кальция - 7,5. Катализатор загружается в проточный реактор. Режим испытаний и полученные результаты приведены в таблице 1.
Пример 2.
Катализатор готовится следующим образом. Гидроксид магния, гидроксид алюминия, диоксид кремния, оксид цинка помещаются в смеситель, перемешиваются 0,5 часа, затем добавляется раствор нитрата стронция и вода до образования пластичной масс.ы и перемешивается 2 часа. Исходные реагенты берутся в количествах, обеспечивающих следующий состав катализатора, считая на оксиды, % масс.: оксид магния - 76,0; оксид алюминия - 4,5; диоксид кремния - 17,0; оксид цинка - 1,0; оксид стронция - 1,5. Далее полученная масс.а формуется, высушивается и прокаливается аналогично примеру 1. Полученный катализатор измельчается, и отсеивается фракция 63-630 мкм для испытаний активности. Испытания активности осуществляют на установке с кипящим слоем катализатора. Режим испытаний и полученные результаты приведены в таблице 1.
Пример 3.
Катализатор готовится аналогично примеру 1, но вводятся дополнительно оксиды бария, титана и портландцемент на стадии перемешивания в смесителе, а исходные реагенты берутся в количествах, обеспечивающих следующий состав катализатора, считая на оксиды, % масс.: оксид магния - 52,9; оксид алюминия - 12,5; диоксид кремния - 23,6; оксид цинка - 1,5; оксид кальция - 3,5; оксид бария - 0,5; оксид титана - 4,5; портландцемент - 1,0. Катализатор измельчается и отсеивается фракция 63-630 мкм. Испытания активности осуществляют на установке с кипящим слоем катализатора. Режим испытаний и полученные результаты приведены в таблице 1.
Пример 4.
Катализатор готовится аналогично примеру 1, но вводится дополнительно оксид олова на стадии перемешивания в смесителе, а исходные реагенты берутся в количествах, обеспечивающих следующий состав катализатора, считая на оксиды, % масс.: оксид магния - 47,0; оксид алюминия - 4,8; диоксид кремния - 41,0; оксид цинка - 0,1; оксид кальция - 2,1; оксид олова - 5,0. Катализатор измельчается, и отсеивается фракция 63-630 мкм. Испытания активности осуществляют на установке с кипящим слоем катализатора. Режим испытаний и полученные результаты приведены в таблице.
Пример 5.
Катализатор готовится аналогично примеру 1, но вводятся дополнительно оксид титана и портландцемент на стадии перемешивания в смесителе, а исходные реагенты берутся в количествах, обеспечивающих следующий состав катализатора, считая на оксиды, % масс.: оксид магния - 48,9; оксид алюминия - 5,6; диоксид кремния - 18,1; оксид цинка - 0,7; оксид кальция - 1,7; оксид титана - 5,0; портландцемент - 20,0. Катализатор измельчается и отсеивается фракция 63-630 мкм. Испытания активности осуществляют на установке с кипящим слоем катализатора. Режим испытаний и полученные результаты приведены в таблице.
* Средняя температура по слою катализатора
Таким образом, как следует из представленных в таблице данных, предлагаемый катализатор для получения бутадиена из этанола, обеспечивает получение более высокой конверсии этанола при высокой избирательности по бутадиену. При этом катализатор может использоваться в процессе в различных вариантах - в качестве стационарного или кипящего слоя, и обеспечивается более длительный или непрерывный реакционный цикл.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕНА ПРЕВРАЩЕНИЕМ ЭТАНОЛА (ВАРИАНТЫ) | 2012 |
|
RU2503650C1 |
СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕНА | 2015 |
|
RU2603199C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА | 2011 |
|
RU2448939C1 |
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ АЛКИЛАРОМАТИЧЕСКИХ, АЛКИЛПИРИДИНОВЫХ И ОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ | 2018 |
|
RU2664124C1 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА | 2011 |
|
RU2442646C1 |
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ АЛКИЛАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 2012 |
|
RU2509604C1 |
АЛЮМОСИЛИКАТСОДЕРЖАЩИЙ КАТАЛИЗАТОР | 2015 |
|
RU2585789C1 |
КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ СЕЛЕКТИВНОСТИ ПРЕВРАЩЕНИЯ АЛКАНОВ В НЕНАСЫЩЕННЫЕ КАРБОНОВЫЕ КИСЛОТЫ, СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ И СПОСОБ ПРИМЕНЕНИЯ КОМПОЗИЦИИ | 2005 |
|
RU2342991C2 |
КАТАЛИЗАТОР ДЛЯ РАСЩЕПЛЕНИЯ ВЫСОКОКИПЯЩИХ ПОБОЧНЫХ ПРОДУКТОВ СИНТЕЗА ИЗОПРЕНА | 2000 |
|
RU2167710C1 |
СПОСОБ НЕПРЕРЫВНОГО ПОЛУЧЕНИЯ ОРГАНИЧЕСКИХ КАРБОНАТОВ ИЛИ ОРГАНИЧЕСКИХ КАРБАМАТОВ И ТВЕРДЫЕ КАТАЛИЗАТОРЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2447056C1 |
Изобретение относится к способам получения катализаторов для процесса получения бутадиена. Описан катализатор для получения бутадиена превращением этанола, содержащий соединения цинка, кремния, магния и алюминия. Катализатор дополнительно содержит соединения кальция и/или стронция. Состав катализатора, считая на оксиды, % масс.: оксид магния 47÷76; оксид алюминия 4,5÷12,5; оксид цинка 0,1÷1,5; оксид кальция и/или стронция 1,5÷7,5; диоксид кремния остальное. Катализатор может содержать оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0% масс. и/или портландцемент в количестве 1-20% масс. Технический результат: повышение конверсии этанола и избирательности по бутадиену. 2 з.п. ф-лы, 1 табл., 5 пр.
1. Катализатор для получения бутадиена превращением этанола, содержащий соединения цинка, кремния, магния и алюминия, отличающийся тем, что он дополнительно содержит соединения кальция и/или стронция в следующих количествах, считая на оксиды, % масс.:
2. Катализатор по п.1, отличающийся тем, он дополнительно содержит оксиды и/или легко разлагающиеся до оксидов соединения бария, и/или титана, и/или олова в количествах 0,5-5,0% масс. и/или портландцемент в количестве 1-20% масс.
3. Катализатор по п.1 или 2, отличающийся тем, что в качестве соединений магния, алюминия, кремния, цинка, кальция и/или стронция используются оксиды и/или легко разлагающиеся до оксидов соединения.
СПОСОБ ПОЛУЧЕНИЯ ДИВИНИЛА (ВАРИАНТЫ) | 2010 |
|
RU2459788C2 |
WO 2012015340 A1, 02.02.2012 | |||
СПОСОБ ИССЛЕДОВАНИЯ ПРОЦЕССА ОЧИСТКИ РЕЗЕРВУАРОВ ОТ ОСТАТКОВ НЕФТЕПРОДУКТОВ | 2012 |
|
RU2516849C1 |
US 6323383 B1, 27.11.2001 | |||
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ РОГОВЫХ ОБРАЗОВАНИЙ ЖИВОТНЫХ, НАПРИМЕР КРУПНОГО РОГАТОГО СКОТА | 2010 |
|
RU2423951C1 |
Авторы
Даты
2014-04-27—Публикация
2012-11-16—Подача