СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА Российский патент 2012 года по МПК C07C11/18 C07C1/20 B01J21/02 B01J21/04 B01J21/08 B01J21/10 B01J23/06 B01J23/30 B01J23/14 B01J23/34 

Описание патента на изобретение RU2448939C1

Изобретение относится к области производства мономеров, применяемых в производстве высокомолекулярных соединений, в частности к получению изопрена, взаимодействием органического соединения C4 и метилаля.

Известен способ получения изопрена, где в качестве исходного сырья - углеводорода C4 используется изобутан. Изобутан по данному способу окисляют кислородом с получением гидроперекиси третичного бутила и третичного бутилового спирта. Затем в результате дополнительных четырех стадий, включающих синтез метилаля взаимодействием гидроперекиси третичного бутила и метанола, синтез изобутилена дегидратацией третичного бутилового спирта, взаимодействие синтезированных метилаля и изобутилена с получением в основном 1,3-ди-метокси-3-метилбутана, 4-метокси-2-метилбутена-1 и небольшого количества изопрена с последующим разложением получаемой смеси в изопрен и метанол (Патент США №3758610, опубликованный 05.06.1974).Часть стадий осуществляется в периодическом режиме - в автоклаве, часть стадий - в проточном реакторе. Катализаторами для различных стадий процесса являются кислоты (минеральные и органические, кислоты Льюиса), катионообменные смолы, молекулярные сита (на основе оксидов алюминия и кремния). В качестве промоторов катализаторов используются соли кобальта, железа, меди, никеля, марганца или хрома.

Недостатком данного способа является наличие большого числа стадий. При этом образуется значительное количество промежуточных веществ, которые необходимо выделять, и большое количество побочных продуктов (конверсия исходного сырья по стадиям составляет 50-95%, при селективности 85-95%, что по процессу в целом, считая на исходный изобутан, составляет ~20% и ~60% соответственно).

Известен также способ получения изопрена в газовой фазе путем взаимодействия метилаля с углеводородами C4, например с изобутиленом или бутеном-2 или смесью углеводородов C4-C5, например смесью олефинов и парафинов, кипящих при (-10)-40°С с содержанием, по меньшей мере, 5-10% мас. изобутилена и 0-20% бутена-2, при температуре 150-450°С, объемной скорости по жидкости 0,1-25 ч-1, молярном отношении изобутилена к метилалю 2-20 в присутствии твердого катализатора - фосфата бора, предпочтительно содержащего сульфат магния, бария или свинца или фосфат меди в количестве 1-25% от массы катализатора на носителе. Носителем для катализатора могут служить тета- или гамма-глиноземы, двуокись кремния, окись титана, двуокись циркония, хрома, окись цинка, магния кальция или смеси кремнезема и глинозема. (Патент СССР №568357, заявлен 16.04.73, опубликован 05.08.77. Бюллетень №29). Конверсия метилаля достигала 99%, при селективности по изопрену - до 81%. Недостатком способа является недостаточно высокая селективность процесса, которая с течением времени постоянно снижалась. Сведений об условиях регенерации катализатора с целью возобновления синтеза с приемлемыми показателями нет.

Известен также способ получения изопрена взаимодействием метилаля и углеводородов C4-C5, предпочтительно смеси олефиновых и парафиновых углеводородов (Пат СССР №440818, заявлен 10.11.72, опубликован 25.08.74, бюллетень №31). В качестве олефинов могут использоваться изобутилен или бутилен-2 или их смесь, предпочтительно использование смеси олефиновых углеводородов с парафиновыми, содержащей не менее 5% мас. изобутилена и 0-20% мас. бутилена-2. В качестве парафиновых углеводородов могут использоваться продукты переработки нефти, с температурой кипения от минус 10 до плюс 40°С. Синтез изопрена осуществляется в паровой фазе на неподвижном слое катализатора при температуре 150-450°С, объемной скорости по жидкости 0,1-25 ч-1. В качестве катализатора используют трехфтористый бор с добавками солей металлов II или IV группы, нанесенный на безводную неорганическую окись. В качестве добавок используют сульфат магния, бария, свинца или фосфат меди в количестве 1-25% от массы катализатора. В основном в качестве носителя используется безводная окись алюминия, но могут использоваться и другие в основном безводные неорганические оксиды, например оксиды кремния, циркония, титана, хрома, цинка, магния, кальция или различные сочетания оксидов кремния и алюминия. Активность катализатора в процессе поддерживалась дополнительным введением в реакционную зону газообразного трехфтористого бора, путем периодического или непрерывного смешивания с реакционным потоком трехфтористого бора или отдельного введения его в среде инертного газа, например азота. Конверсия метилаля достигала 99%, при селективности по изопрену до 82%. Процесс осуществлялся без ухудшения показателей до 5 часов, после чего избирательность существенно снижалась. В данном способе указывается, что катализатор может быть регенерирован нагреванием при высокой температуре и обработкой трехфтористым бором. Недостатком данного способа является недостаточно высокая селективность и короткий межрегенерационный пробег катализатора, а для поддержания активности и регенерации катализатора используется высокотоксичное вещество - трехфтористый бор. Недостатком перечисленных выше способов является также чувствительность к наличию воды, поскольку трехфтористый бор взаимодействует с водой. Это обуславливает необходимость применения осушенных продуктов как на стадии синтеза, так и на стадии регенерации, а также ограничивает сырьевую базу получения изопрена - не позволяет использовать компоненты, при разложении которых в качестве побочного продукта образуется вода, например, такие как третичный бутиловый спирт.

Наиболее близким к заявляемому способу является способ получения изопрена, описанный в патенте РФ №2405624 (заявлен 09.09.2009, опубликован 10.12.2010, бюллетень №34). Согласно данному способу, изопрен получают взаимодействием метилаля и изобутилена на катализаторах, содержащих фосфат бора и алюмомагниевую и/или алюмоцинковую шпинели. Катализатор может содержать также оксиды или легкоразлагающиеся до оксидов соединения алюминия, магния, цинка, церия, лантана, празеодима, кремния, кальция, ванадия, молибдена. При этом вода не оказывает отравляющего действия на катализатор и процесс протекает при селективности по изопрену 84,2-87,6% мол. Недостатками описанного в патенте способа синтеза изопрена являются недостаточно высокая селективность, относительно короткий межрегенерационный период, неравномерный температурный режим.

Задачей, решаемой настоящим изобретением, является расширение сырьевой базы процесса синтеза изопрена, обеспечение требуемого температурного режима, повышение селективности и поддержание высоких показателей синтеза изопрена в течение увеличенного межрегенерационного периода.

Предлагается способ получения изопрена путем взаимодействия органического соединения С4 и метилаля в паровой фазе на неподвижном слое катализатора, представляющего собой фосфат бора, содержащий, по крайней мере, один из оксидов и/или легкоразлагающиеся до оксидов соединения, выбранные из группы алюминия, магния, цинка, кремния, согласно которому в качестве органического соединения С4 используют третичный бутиловый спирт, процесс осуществляют в аппарате, содержащем, по крайней мере, одну секцию, заполненную катализатором, и используют катализатор, содержащий дополнительно, по крайней мере, один из оксидов и/или легко разлагающиеся до оксидов соединения, выбранные из группы марганца, вольфрама, олова, титана, циркония при следующем содержании компонентов, % масс.:

Оксиды и/или легкоразлагающиеся до оксидов соединения, выбранные из группы алюминия, магния, цинка, кремния 1,5-65 Оксиды и/или легкоразлагающиеся до оксидов соединения, выбранные из группы марганца, вольфрама, олова, титана, циркония 0,1-28 Фосфат бора остальное

В способе можно также использовать катализатор, дополнительно содержащий, по крайней мере, один из оксидов и/или легкоразлагающиеся до оксидов соединения, выбранные из группы бора, церия, молибдена в количестве 0,1-12,5% масс.

Можно также использовать катализатор, в котором не менее 3% от общего количества оксидов алюминия, магния, цинка, титана, вольфрама в катализаторе находятся в виде шпинели.

Предпочтительнее способ осуществлять в присутствии, по крайней мере, одного из следующих компонентов, выбранных из группы: вода, органические или минеральные кислоты или их ангидриды, спирты, эфиры, углеводороды С35, подача которых составляет 0,01-1000% от общей массы метилаля.

Способ также может быть осуществлен в аппарате, содержащем от 2 до 10 секций, заполненных катализатором, при этом не менее чем по 5% масс. общего количества метилаля и третичного бутилового спирта подается на первую секцию по ходу потока. Для поддержания необходимого температурного режима и высокой конверсии метилаля в реакционный поток между секциями добавляют поток-теплоноситель. Этот поток не обязательно содержит метилаль и/или третичный бутиловый спирт. На первую секцию в этом случае может подаваться до 100% общего количества метилаля и третичного бутилового спирта, а в состав такого потока, выполняющего роль внутреннего теплоносителя, могут входить соединения, обладающие достаточной термостабильностью, такие как вода, спирты, углеводороды C3-C6.

Как вариант процесс осуществляют в аппарате, содержащем от 2 до 5 секций, заполненных катализатором, при этом все реагенты подаются на первую секцию, и осуществляется непрямой подогрев реакционной массы между секциями.

Подача кислот и кислородсодержащих соединений - воды, спиртов, ангидридов увеличивают межрегенерационный период. Используемыми кислотами могут быть, например, фосфорная, щавелевая или другие минеральные и/или органические кислоты. В качестве спиртов и эфиров могут быть использованы C1-C5 соединения. В качестве углеводородов C3-C5 предпочтительно использовать парафиновые и олефиновые углеводороды или их смеси.

При осуществлении процесса в адиабатическом режиме происходит снижение температуры вследствие эндотермичности процесса, что приводит к снижению скорости реакции и низкой конверсии. Осуществление дробной подачи исходных реагентов на секции с требуемой температурой позволяет поддерживать необходимый температурный режим по всему реакторному блоку.

Наиболее целесообразно в процесс осуществлять подачу таких соединений, как вода, органические или минеральные кислоты или их ангидриды, спирты, эфиры и углеводороды С3-C5, в количестве 0,01-1000% от общей массы метилаля. Распределение исходных реагентов - метилаля и третичного бутилового спирта, а также добавок по секциям осуществляется исходя из конкретных условий синтеза - изотермический или адиабатический процесс, температура синтеза и мольный избыток третичного бутилового спирта.

Синтез осуществляется при следующих условиях: температура 250÷450°С; давление 3÷15 ати; объемная скорость подачи метилаля 0,1÷1,0 литров на литр катализатора в час (ч-1); отношение подачи метилаля и третичного бутилового спирта 1:1÷10 мольное, в течение 0,5-10 часов.

В секции может загружаться одинаковый катализатор и отличающийся по составу, исходя из конкретных условий - экономических соображений и условий синтеза, например, в том случае, когда поток содержит большое количество воды, целесообразно использовать катализаторы, содержащие повышенное содержание шпинелей.

В секции также может загружаться одинаковое количество катализатора или разное, имея в виду, что время пребывания реагентов на конкретной секции пропорционально количеству катализатора на данной секции. Время пребывания реагентов на каждой конкретной секции, как правило, коррелируется с другими параметрами процесса - температурой, подачей добавок (играющих роль внутреннего теплоносителя или выполняющих другую функцию).

Стадию регенерации катализатора осуществляют при температуре 250÷750°С с подачей на катализатор воздуха или смеси воздуха, по крайней мере, с одним из следующих компонентов: азот, вода, кислоты. Стадия регенерации осуществляется в течение 0,5÷10 часов.

При осуществлении процесса по предлагаемому способу расширяется сырьевая база синтеза изопрена, повышается селективность процесса, обеспечивается требуемый температурный режим и поддержание высоких показателей в течение увеличенного межрегенерационного пробега - до 10 часов.

Изобретение иллюстрируется следующими примерами:

Пример 1

В реактор аксиального типа, представляющий из себя трубку из нержавеющей стали внутренним диаметром 10 мм с наружным электрообогревом, загружалось 60 см3 катализатора. Высота слоя составила 77 см. Состав катализатора: фосфат бора - 34,9% масс., оксид алюминия 30% масс., оксид магния - 35% масс. и оксид марганца - 0,1% масс. Исходные реагенты - метилаль в количестве 12 мл и третичный бутиловый спирт в количестве 51 мл подавались в верхнюю часть реактора над слоем катализатора. Процесс осуществлялся в изотермическом режиме при давлении 9 ати и температуре 290°С, объемная скорость метилаля составила 0,25 ч-1, подача третичного бутилового спирта составляла 4 моля на 1 моль метилаля. Синтез осуществлялся в течение 9 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха и азота в соотношении 1:5 по объему в течении 4 часов. Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Пример 2

В реактор из нержавеющей стали аксиального типа, состоящий из двух секций, диаметром 1,9 см, загружалось 40 см3 катализатора, в том числе в 1-ю секцию 10 см3 и во 2-ю 30 см3. Состав катализатора: на 1-й секции - фосфат бора - 97,45% масс., алюмомарганцевой шпинели - 2,55% масс. (в том числе 1,5% масс. оксид алюминия и 1,05% масс. оксида марганца, находящиеся в виде шпинели - 100% от содержания оксидов алюминия и марганца); на 2-й секции - фосфат бора 10% масс., оксид алюминия - 13,3% масс., оксид магния - 15,7% масс., алюмомагниевая шпинель - 32,9% масс., оксид церия - 0,1% масс., оксид олова - 28 % масс. Содержание шпинелей составляет 53,15% от общего количества оксидов алюминия и магния. На 1-ю секцию подавали 11,4 мл/час (9,9 г/час) метилаля, 0,0012 мл/час (0,00096 г/час) метилового спирта (0,01% от массы метилаля) и 12,1 мл третичного бутилового спирта и процесс осуществляли в изотермическом режиме при температуре 250°С. На 2-ю секцию в реакционную массу, выходящую из 1-й секции, дополнительно подавали 48,4 мл третичного-бутилового спирта с температурой 330°С и процесс осуществлялся при температуре 307°С в изотермическом режиме. Давление по обеим секциям составляло 3 ати, объемная скорость метилаля по реактору в целом составила 0,28 ч-1, подача третичного бутилового спирта по процессу составляла 5 молей на 1 моль метилаля. Таким образом, на 1-ю секцию подавалось 100% метилаля и 20% третичного бутилового спирта.

Процесс синтеза изопрена из метилаля и третичного бутилового спирта осуществлялся на неподвижном слое катализатора в течение 9 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха и азота в соотношении 1:1 по объему в течении 10 часов. Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Пример 3

В реактор из нержавеющей стали аксиального типа, состоящий из 5 секций, диаметром 1,9 см, загружалось 60 см3 катализатора, в том числе в 1-ю секцию 20 см3 и в последующие 4 по 10 см3. Состав катализатора был одинаковым во всех секциях: фосфат бора - 47,7% масс., оксид алюминия 12,7% масс., оксид магния - 3,9% масс., оксид циркония - 1,5% масс., оксид кремния - 1,5% масс., оксид вольфрама 1,0% масс., оксид олова - 2,6% масс., оксид церия - 5,2% масс., оксид молибдена - 1,5% масс., алюмомагниевая шпинель - 10,4% масс., алюмоцинковая шпинель - 8,4% масс., вольфрамомагниевая шпинель - 1,5% масс., титаномагниевая шпинель - 2,1% масс. (суммарное содержание шпинелей - 56% от общего количества оксидов алюминия, магния, цинка, вольфрама, титана). На 1-ю секцию подавали 11,4 мл/час (9,9 г/час) метилаля, 24,2 мл третичного бутилового спирта и 99 г/час (1000% от массы метилаля) смеси, содержащей 98% масс. воды и 2% масс. щавелевой кислоты. На каждую из последующих секций, в реакционную массу, выходящую из предыдущей секции, дополнительно подавали по 12,1 мл третичного бутилового спирта. Таким образом, на 1-ю секцию подавали 100% метилаля и 33,3% третичного бутилового спирта. Процесс осуществлялся в изотермическом режиме при давлении 15 ати и температуре 300°С по всем 5 секциям, объемная скорость метилаля по реактору в целом составила 0,19 ч-1, подача третичного бутилового спирта составляла 6 молей на 1 моль метилаля.

Процесс синтеза изопрена из метилаля и третичного бутилового спирта осуществлялся на неподвижном слое катализатора в течение 9,5 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха и азота в соотношении 1:10 по объему в течение 2 часов. Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Пример 4

В реактор из нержавеющей стали аксиального типа, состоящий из 10 секций, диаметром 1,9 см, загружалось 100 см3 катализатора по 10 см3 в каждую секцию. Состав катализатора был одинаковым во всех секциях: фосфат бора - 10% масс., алюмомагниевая шпинель - 62% масс., оксид марганца - 3,5% масс., оксид олова - 12,3% масс. и оксид вольфрама - 12,2% масс. Суммарное содержание шпинелей - 83,56% от общего количества оксидов алюминия, магния, вольфрама. На 1-ю секцию подавали 0,5 мл/час (0,434 г/час) метилаля, 2,57 мл/час третичного бутилового спирта и 8,6 г смеси, содержащей 83,6% масс. воды, 5% масс. фосфорной кислоты, 2% уксусной кислоты, 2,7% уксусного ангидрида, 1,6% масс. метилового спирта, 2,5% масс. этилового спирта, 2,6% масс. диэтилового эфира. На 2-ю секцию подавалось дополнительно 1,5 мл/час (1,3 г/час) метилаля и 6,36 мл/час третичного бутилового спирта. На секции с 3 по 10 дополнительно подавали по 1 мл метилаля и по 5,3 мл третичного бутилового спирта. Таким образом на 1-ю секцию подавалось по 5% от общего количества метилаля и третичного бутилового спирта. Процесс осуществлялся в изотермическом режиме, при давлении 6 ати и температуре 275°С по всем секциям, объемная скорость метилаля по реактору в целом составила 0,1 ч-1, подача третичного бутилового спирта составляла 4,83 моля на 1 моль метилаля, подача смеси, содержащей воду, фосфорную кислоту, уксусную кислоту, уксусный ангидрид, метиловый спирт, этиловый спирт, диэтиловый эфир, составила 99,1% от общей массы метилаля.

Процесс синтеза изопрена из метилаля и третичного бутилового спирта осуществлялся на неподвижном слое катализатора в течение 10 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха и азота в соотношении 1:8 по объему в течении 2 часов. Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Пример 5

В реактор аксиального типа, состоящий из 3-х одинаковых секций, со следующими характеристиками: внутренний диаметр секции с катализатором - 15 см; высота слоя катализатора в каждой секции - 15 см, загружалось по 2,65 литра катализатора. Состав катализатора был одинаковым во всех секциях: фосфат бора - 66,7% масс., оксид алюминия - 11,7% масс., оксид магния - 4,5% масс., оксид цинка - 16,1% масс., алюмомагниевая шпинель - 0,6% масс., титаномагниевая шпинель - 0,4% масс. (суммарное содержание шпинелей - 3% от общего количества оксидов алюминия, магния, цинка, титана)

Процесс осуществлялся в адиабатическом режиме. На 1-ю секцию с температурой 346°С поступало 2,04 л/час (1,77 кг/час) метилаля, 2,16 л/час (1,72 кг/час) третичного бутилового спирта и 4,02 кг смеси, содержащей 6,59% масс. изобутана, 81,84% масс. изобутилена, 3,28% масс метанола, 7,41% масс. воды и 0,88% масс. щавелевой кислоты. На выходе из 1-й секции температура реакционного потока составляла 276°С. Перед поступлением на 2-ю секцию реакционный поток смешивался с 2,55 кг смеси, имеющей температуру 375°С и содержащей 7,41% масс. изобутана, 92,08% масс. изобутилена и 0,51% масс. метанола. Температура суммарного потока, поступающего на 2-ю секцию, составляла 303,5°С. Температура реакционного потока на выходе из 2-й секции составляла 288°С. Перед поступлением на 3-ю секцию реакционный поток смешивался с 2,10 кг смеси, имеющей температуру 375°С и содержащей 7,41% масс. изобутана, 92,08% масс. изобутилена и 0,51% масс. метанола. Температура суммарного потока, поступающего на 3-ю секцию, составляла 304°С. Температура реакционного потока на выходе из 3-й секции составляла 300°С. Синтез осуществлялся при давлении 6,5-6,4 ати. Подача третичного бутилового спирта к подаче метилаля составляла 1:1 мольное. На 1-ю секцию поступало по 100% от общего количества метилаля и третичного бутилового спирта. Объемная скорость метилаля по всему реактору составляла 0,26 ч-1. Подача суммарного количества изобутана, изобутилена, метанола, воды и щавелевой кислоты составляла 489,8% масс. от подаваемого метилаля. Процесс синтеза изопрена из метилаля и третичного бутилового спирта осуществлялся на неподвижном слое катализатора в течение 9 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха и азота в соотношении 1:10 по объему в течение 2 часов. Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Пример 6

В реактор радиального типа, состоящий из 2-х одинаковых секций со следующими характеристиками: внутренний диаметр секции с катализатором - 10 см; внешний диаметр секции с катализатором - 38 см; высота секции с катализатором 45 см, загружалось по 47,5 литров катализатора в каждую секцию. Состав катализатора был одинаковым в обеих секциях: фосфат бора - 21% масс., оксид алюминия 18,4% масс., оксид магния - 21,2% масс., оксид вольфрама - 0,5% масс., оксид молибдена - 1,5% масс., оксид церия - 7,8% масс. и оксид бора - 3,2% масс., алюмоцинковая шпинель - 26,4% масс. (содержание шпинели 39,7% масс. от общего количества оксидов алюминия, магния, вольфрама, цинка).

Между секциями имеется подогреватель для непрямого (через стенку) подогрева реакционного потока. Греющий агент - перегретый водяной пар.

В 1-ю секцию, внутрь кольца с катализатором (со стороны меньшего диаметра) подается 37 л/час (32,12 кг/час) метилаля, 157,3 л/час (125,15 кг/час) третичного бутилового спирта, 1,3 кг водного раствора фосфорной кислоты (57%) и 96,36 кг/час смеси (в качестве внутреннего теплоносителя), содержащей 92,81% масс. изобутилена, 4,25 масс. изобутана, 1,25% масс. пропана, 1,18% масс. пропилена, 0,11% масс. изоамиленов, 0,34% масс. изопрена, 0,06% масс. н-пентана. Процесс осуществляется в адиабатическом режиме, при давлении 7 ати. Температура на входе в 1-ю секцию 330°С, на выходе из 1-й секции 295°С. В реакционный поток после 1-й секции добавляется перегретый водяной пар в количестве 24,6 кг с температурой 375°С в качестве внутреннего теплоносителя. Температура суммарного потока 301°С. В межсекционном подогревателе суммарный реакционный поток подогревается до 330°С и поступает на 2-ю секцию. Температура на выходе из 2-й секции 308°С. Подача третичного бутилового спирта составила 4 моля на 1 моль метилаля. На 1-ю секцию поступало по 100% от общего количества метилаля и третичного бутилового спирта. Объемная скорость метилаля составила 0,39 ч-1. Подача суммарного количества изобутана, изобутилена, пропана, пропилена, изоамиленов, изопрена, н-пентана, воды и фосфорной кислоты составляла 380,6% масс. от подаваемого метилаля.

Процесс синтеза изопрена из метилаля и третичного бутилового спирта осуществлялся на неподвижном слое катализатора в течение 9,5 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха, азота и водяного пара в соотношении 1:4:10 по объему в течение 2 часов. Дополнительно в период регенерации подавалось 0,64 кг/час щавелевой кислоты (на 100% кислоту). Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Пример 7

В реактор из нержавеющей стали аксиального типа, состоящий из 5 секций, диаметром 1,9 см, загружалось 50 см3 катализатора по 10 см3 в каждую секцию. Между секциями имеются электрические подогреватели. Состав загружаемого катализатора был одинаковым во всех секциях, % масс: фосфат бора - 22% масс., оксид алюминия 28,4% масс., оксид магния - 31,2% масс., оксид циркония -0,5% масс., оксид молибдена - 1% масс., оксид церия - 6,8% масс. и оксид бора - 4,7% масс., оксид кремния - 5,4% масс. На 1-ю секцию подавали 50 мл/час (43,4 г/час) метилаля, 531,2 мл/час (422,7 г/час) третичного бутилового спирта, 72,4 мл воды и 0,9 г (в пересчете на 100%) фосфорной кислоты. Таким образом, на 1-ю секцию подавалось 100% общего количества метилаля и третичного бутилового спирта. Объемная скорость метилаля составляла 1 литр/литр катализатора в час (1 ч-1), подача третичного бутилового спирта составляла 10 молей на 1 моль метилаля. Подача воды и фосфорной кислоты составляла 168,9% от массы метилаля. Процесс осуществлялся в изотермическом режиме в пределах одной секции, при давлении 6 ати и температуре 350°С на 1-й секции, 375°С на 2-й секции, 400°С на 3-й секции, 425°С на 4-й секции и 450°С на 5-й секции.

Процесс синтеза изопрена из метилаля и третичного бутилового спирта осуществлялся на неподвижном слое катализатора в течение 9 часов, после чего подача реагентов прекращается, реактор продувается азотом в течение 10 минут и осуществляется регенерация катализатора смесью воздуха, азота и водяного пара в соотношении 1:8:16 по объему в течение 0,5 часа. Дополнительно в период регенерации подавалось 0,43 г/час фосфорной кислоты (в пересчете на 100%). Параметры процессов синтеза и регенерации и показатели процесса синтеза приведены в таблице.

Таблица Параметры и показатели процесса синтеза изопрена из метилаля и третичного бутилового спирта и параметры процесса регенерации катализатора Наименование показателя Номер примера 1 2 3 4 5 6 7 Процесс синтеза 1 2 5 10 3 2 5 Количество секций Объемная скорость подачи жидкого метилаля, л/л катализатора в час, W, ч-1 0,25 0,28 0,19 0,1 0,26 0,39 1 Мольный избыток третичного бутилового спирта по отношению к метилалю (в расчете на 100% третичный бутиловый спирт), моль/моль 4 5 6 4,83 1 4 10 Подача воды, органических и минеральных кислот, ангидридов, спиртов, эфиров, углеводородов C35, % от массы метилаля 0 0,01 1000 99,1 489,8 380,6 168,9 Температура, °С 290 250-307 300 275 346-276 330-294 450-350 Давление, ати 9 3 15 6 6,5-6,4 6 6 Конверсия метилаля, % 96-98 97-98 97-99 98-99 98-99 97-99 >99 Селективность по изопрену, % мол. 88,2 88,9 88,6 88,4 88,7 88,9 88,2 Период сохранения активности без регенерации - межрегенерационный пробег (±3%), час 9 9 9,5 10 9 9,5 9 Процесс регенерации Температура, °С 450 250 500 550 500 600 750 Давление, ати 0,05 3 15 6 6,5 6 6 Длительность регенерации, час 4 10 2 2 2 2 0,5 Подача воздуха, л/час 9 18 18 7,5 1190 7200 7,5

Таким образом, как следует из представленных в таблице данных, предлагаемый способ получения изопрена из метилаля и третичного бутилового спирта не только расширяет сырьевую базу синтеза изопрена на основе метилаля, но и обеспечивает протекание процесса с более высокой селективностью и более длительным межрегенерационным пробегом по сравнению с известными способами.

Похожие патенты RU2448939C1

название год авторы номер документа
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА 2011
  • Котельников Георгий Романович
  • Качалов Дмитрий Васильевич
  • Сиднев Владимир Борисович
  • Беспалов Владимир Павлович
  • Луговкин Сергей Николаевич
  • Глушаков Михаил Иванович
RU2442646C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2009
  • Котельников Георгий Романович
  • Сиднев Владимир Борисович
  • Качалов Дмитрий Васильевич
  • Луговкин Сергей Николаевич
RU2414447C1
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА 2009
  • Котельников Георгий Романович
  • Качалов Дмитрий Васильевич
  • Сиднев Владимир Борисович
  • Луговкин Сергей Николаевич
RU2405624C1
СПОСОБ ПРИГОТОВЛЕНИЯ АЛЮМОСИЛИКАТСОДЕРЖАЩЕГО КАТАЛИЗАТОРА 2017
RU2644159C1
ОДНОСТАДИЙНЫЙ СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2010
  • Ордомский Виталий Валерьевич
  • Сушкевич Виталий Леонидович
  • Иванова Ирина Игоревна
RU2421441C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 1995
  • Чуркин В.Н.
  • Павлов С.Ю.
  • Суровцев А.А.
  • Карпов О.П.
  • Бубенков В.П.
  • Павлов О.С.
  • Тульчинский Э.А.
RU2091362C1
ОДНОСТАДИЙНЫЙ СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2009
  • Ордомский Виталий Валерьевич
  • Сушкевич Виталий Леонидович
  • Иванова Ирина Игоревна
RU2412148C1
АЛЮМОСИЛИКАТСОДЕРЖАЩИЙ КАТАЛИЗАТОР 2015
RU2585789C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 1990
  • Павлов С.Ю.
  • Горшков В.А.
  • Чуркин В.Н.
  • Смирнов В.А.
  • Титова Л.Ф.
  • Казаков В.П.
  • Андреев В.А.
  • Бытина В.И.
SU1811155A1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 2010
  • Ордомский Виталий Валерьевич
  • Сушкевич Виталий Леонидович
  • Иванова Ирина Игоревна
RU2446138C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА

Изобретение относится к способу получения изопрена путем взаимодействия органического соединения С4 и метилаля в паровой фазе на неподвижном слое катализатора, представляющего собой фосфат бора, содержащий, по крайней мере, один из оксидов и/или легкоразлагающиеся до оксидов соединения, выбранные из группы алюминия, магния, цинка, кремния, характеризующемуся тем, что в качестве органического соединения С4 используют третичный бутиловый спирт, процесс осуществляют в аппарате, содержащем, по крайней мере, одну секцию, заполненную катализатором, и используют катализатор, содержащий дополнительно, по крайней мере, один из оксидов и/или легкоразлагающиеся до оксидов соединения, выбранные из группы марганца, вольфрама, олова, титана, циркония при следующем содержании компонентов, % масс.: оксиды и/или легкоразлагающиеся до оксидов соединения, выбранные из группы алюминия, магния, цинка, кремния 1,5-65; оксиды и/или легкоразлагающиеся до оксидов соединения, выбранные из группы марганца, вольфрама, олова, титана, циркония 0,1-28; фосфат бора - остальное. Использование настоящего способа позволяет расширить сырьевую базу, повысить селективность, увеличить межрегенерационный пробег. 7 з.п. ф-лы, 7 пр., 1 табл.

Формула изобретения RU 2 448 939 C1

1. Способ получения изопрена путем взаимодействия органического соединения С4 и метилаля в паровой фазе на неподвижном слое катализатора, представляющий собой фосфат бора, содержащий, по крайней мере, один из оксидов и/или легко разлагающиеся до оксидов соединения, выбранные из группы алюминия, магния, цинка, кремния, отличающийся тем, что в качестве органического соединения С4 используют третичный бутиловый спирт, процесс осуществляют в аппарате, содержащем, по крайней мере, одну секцию, заполненную катализатором, и используют катализатор, содержащий дополнительно, по крайней мере, один из оксидов и/или легко разлагающиеся до оксидов соединения, выбранные из группы марганца, вольфрама, олова, титана, циркония при следующем содержании компонентов, мас.%:
оксиды и/или легко разлагающиеся до оксидов соединения, выбранные из группы алюминия, магния, цинка, кремния 1,5-65 оксиды и/или легко разлагающиеся до оксидов соединения, выбранные из группы марганца, вольфрама, олова, титана, циркония 0,1-28 фосфат бора остальное

2. Способ по п.1, отличающийся тем, что используют катализатор, дополнительно содержащий, по крайней мере, один из оксидов и/или легкоразлагающиеся до оксидов соединения, выбранные из группы бора, церия, молибдена в количестве 0,1-12,5 мас.%.

3. Способ по п.1 или 2, отличающийся тем, что используют катализатор, в котором не менее 3% от общего количества оксидов алюминия, магния, цинка, титана, вольфрама в катализаторе находятся в виде шпинели.

4. Способ по п.1, отличающийся тем, что процесс проводят в присутствии, по крайней мере, одного из следующих компонентов, выбранных из группы: вода, органические или минеральные кислоты или их ангидриды, спирты, эфиры, углеводороды С35, подача которых составляет 0,01-1000% от общей массы метилаля.

5. Способ по п.1 или 4, отличающийся тем, что процесс осуществляют в аппарате, содержащем от 2 до 10 секций, заполненных катализатором, при этом не менее чем по 5 мас.% общего количества метилаля и третичного бутилового спирта подают на первую секцию по ходу потока.

6. Способ по п.5, отличающийся тем, что в реакционный поток между секциями вводят поток-теплоноситель.

7. Способ по п.1 или 4, отличающийся тем, что процесс осуществляют в аппарате, содержащем от 2 до 5 секций, заполненных катализатором, при этом все реагенты подают на первую секцию, и осуществляют непрямой подогрев реакционной массы между секциями.

8. Способ по п.7, отличающийся тем, что в реакционный поток между секциями вводят поток-теплоноситель.

Документы, цитированные в отчете о поиске Патент 2012 года RU2448939C1

КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ИЗОПРЕНА 2009
  • Котельников Георгий Романович
  • Качалов Дмитрий Васильевич
  • Сиднев Владимир Борисович
  • Луговкин Сергей Николаевич
RU2405624C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОПРЕНА 1972
  • Тэрнер Джон Оливер
SU440818A1
Способ включения электрических машин переменного тока 1986
  • Конюхов Александр Иванович
SU1396208A1

RU 2 448 939 C1

Авторы

Котельников Георгий Романович

Сиднев Владимир Борисович

Качалов Дмитрий Васильевич

Луговкин Сергей Николаевич

Комаров Станислав Михайлович

Чуркин Владимир Николаевич

Глушаков Михаил Иванович

Даты

2012-04-27Публикация

2011-01-11Подача