СПОСОБ РАЗДЕЛЕНИЯ СМЕСИ ГАЗОВ Российский патент 2014 года по МПК B01D53/00 

Описание патента на изобретение RU2514859C2

Предлагаемое изобретение относится к технике переработки попутного или природного газа, а именно к процессу низкотемпературной сепарации компонент газа.

Известен способ разделения смеси газов (патент ЕР 2326403 АО), включающий охлаждение смеси газов и расширение смеси во вращающемся потоке с разделением смеси на продукт, обогащенный целевыми компонентами, и продукт, обедненный этими компонентами, прокачку части продуктов, полученных из смеси газов, через колонну, включение обедненного продукта в состав выходного газа.

Однако такой способ не позволяет достичь высокой степени очистки от целевых компонент, т.к. температура точки росы обедненного потока остается достаточно высокой из-за того, что затруднительно получить низкие температуры в теплообменниках, расположенных перед входом в сопло, из-за конденсации компонент в теплообменниках.

Наиболее близким к предлагаемому изобретению является способ разделения по патенту RU 2272973 С1, включающий охлаждение смеси газов, расширение смеси в закрученном потоке в сопле с разделением смеси на продукт, обогащенный тяжелыми компонентами, и продукт, обедненный этими компонентами, направлении по крайней мере части обогащенного продукта в ректификационную колонну, направление по крайней мере части газофазных продуктов, полученных в ректификационной колонне, в смесь до ее расширения, нагрев обедненного продукта за счет охлаждения смеси газов.

Однако такой способ также не позволяет получать высокую степень очистки из-за невозможности получить низкие температуры в теплообменниках.

Целью предлагаемого изобретения является увеличение степени очистки выходного газа.

Поставленная цель достигается тем, что в известном способе разделения смеси газов, включающем охлаждение смеси, расширение продуктов, получаемых из смеси, прокачивание по крайней мере части продуктов через ректификационную колонну, расширение смеси в закрученном потоке в сопле с разделением потока на поток, обогащенный компонентами тяжелее метана, и поток обедненными этими компонентами, нагрев обедненного потока за счет охлаждения продуктов, получаемых из смеси, согласно изобретению нагретый газовый поток сжимают в компрессоре, охлаждают в аппарате воздушного охлаждения, часть полученного газового продукта используют в качестве выходного продукта, другую часть дополнительно охлаждают, расширяют, продукты расширения направляют в колонну и/или смешивают с газофазными продуктами, поступающими из колонны в сопло.

Работа предлагаемого изобретения иллюстрируется на примерах устройств, схемы которых приведены на Фиг.1, 2.

На Фиг.1 приняты следующие обозначения: 1 - сырьевой газ или смесь газов; 2 - хладагент; 3-18 продукты, получаемые из смеси; 19-20 - теплообменники; 21-22 - сепараторы, 23 - сопловой сепаратор; 24 - ректификационная колонна; 25-26 - компрессоры; 27-28 - аппараты воздушного охлаждения; 29 - насос; 30-34 - клапаны, 35 - смеситель, 36 - эжектор.

Смесь 1 поступает в смеситель 35, в котором смешивается с газофазным продуктом 17, полученным в сепараторе 22. При этом газ 17 предварительно нагревается в теплообменнике 19, сжимается в компрессоре 25 и охлаждается в аппарате 27 воздушного охлаждения. Смесь 3 охлаждается в теплообменнике 19, полученная двухфазная смесь в сепараторе 21 разделяется на газовый 5 и жидкий 4 продукты, которые расширяются в клапанах 30, 31 и направляются в колонну 24. Расширение газа 5 может быть проведено в турбине детандера или в сопле. Вместо многопоточного теплообменника 19 могут быть использованы несколько теплообменников.

Газофазный продукт 7 из колонны подается в сопловой сепаратор 23, в котором расширяется во вращающемся потоке в сопле и разделяется на обогащенный компонентами тяжелее метана поток 8 и поток 9, обедненный этими компонентами. Обогащенный поток 8 подается в сепаратор 22, в котором разделяются жидкий 14 и газофазный 17 продукты, жидкость 14 с помощью насоса 29 направляется в колонну 24. Обедненный поток 9 направляют в нагреваемые каналы рекуперативного теплообменника 20, и далее дополнительно нагревают в теплообменнике 19, сжимают в компрессоре 26, охлаждают в аппарате 28 воздушного охлаждения, часть полученного газа 10 используют в качестве выходного продукта 11. Другую часть 12 дополнительно охлаждают в теплообменнике 20, расширяют в клапане 34 и направляют в колонну 24.

Часть 6 жидкого продукта используют в качестве хладоносителя в теплообменнике 19. Другую часть 18 жидкого продукта также направляют в качестве хладоносителя в теплообменник 19 и используют в качестве выходного продукта.

При необходимости в теплообменнике 19 может быть использован дополнительный хладагент 2.

Согласно п.2 формулы изобретения газофазный продукт 17 из сепаратора 22, являющийся частью обогащенного потока 16, используют в теплообменнике 19 для охлаждения смеси газов, сжимают компрессором 25, охлаждают в аппарате воздушного охлаждения 27 и направляют в смеситель 35.

Согласно п.3 формулы изобретения вместо дроссельного клапана 34 для расширения дополнительно охлажденной части газа может быть использован турбодетандер и/или сопло.

В случае использования сопла с получением в нем обедненного и обогащенного продуктов эти продукты могут быть направлены в колонну на тарелки разных уровней, что будет способствовать более эффективной работе колонны.

Согласно п.4 формулы изобретения в обогащенный поток 8 могут быть добавлена смесь и/иди продукты, полученные из смеси, имеющие температуру выше температуры точки росы обогащенного потока. Это позволит избежать появления твердой фазы (например, сухого льда) в трубопроводах, а также в сепараторе 22.

Согласно п.5 формулы изобретения дополнительно охлажденную часть газа после расширения направляют в эжектор 36 (Фиг.2), в котором используют в качестве эжектирующего или эжектируемого газа при смешении с продуктами 7, полученными из смеси газов, затем полученную смесь направляют в сопловой сепаратор 23.

Эжектор 36 может быть использован либо для снижения давления в ректификационной колонне, либо для снижения затрат энергии на сжатие.

Вместо смесителя 35 может быть также использован эжектор, что позволит более рационально использовать энергию при сжатии газов.

В таблице 1 приводятся данные по расчету параметров потоков в установке, приведенной в качестве примера на Фиг.1.

В таблице приняты обозначения: № - номер потока, T - температура потока, P - давление потока, приводятся также значения мольной доли компонент в соответствующих строках.

Как следует из приведенного примера, такая установка может быть использована для удаления значительной доли углекислоты из смеси 1, в которой начальное содержание ее достигает ~70%.

Расчеты выполнены для случая, когда разделение потока 7 происходит после расширения потока в сопле соплового сепаратора до давления 1 МПа с последующим восстановлением давления в диффузоре до 2.5 МПа

Таблица 1 1 3 7 9 11 15 16 18 Массовая доля газа 1,00 1,00 1,00 1,00 1,00 0,12 0,2 0,00 Температура ºС 30,00 27,54 -60,35 -50,88 30,00 -61,89 -64,32 5,00 Давление МПа 6,00 6,00 4,50 2,50 8,0 2,50 2,50 4,50 Расход кг/ч 164139,47 181614,60 47164,07 28629,35 12628,61 70000,00 88534,72 141599,13 Мольный состав CO2 0,698789 0,611298 0,135609 0,038539 0,038531 0,612829 0,549182 0,854932 CH4 0,199654 0,30102 0,850679 0,951227 0,951235 0,308918 0,387177 0,036058 C2H6 0,029948 0,027288 0,010989 0,009477 0,009476 0,027095 0,02385 0,03448 C3H8 0,029948 0,025493 0,002218 0,000724 0,000723 0,023974 0,019249 0,034534 i-C4H10 0,009983 0,008391 0,000258 0,000026 0,000026 0,007364 0,005661 0,010792 n-C4H10 0,009983 0,008369 0,000158 0,000007 0,000007 0,00707 0,005367 0,010397 i-C5H12 0,009983 0,00835 0,000055 0,000001 0,000001 0,006208 0,004642 0,009153 n-C5H12 0,009983 0,008346 0,000034 0 0 0,00587 0,004374 0,008661 С6+ и H2O 0,001729 0,001445 0,000001 0 0 0,000672 0,000498 0,000992

Похожие патенты RU2514859C2

название год авторы номер документа
СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА (ВАРИАНТЫ) 2004
  • Имаев Салават Зайнетдинович
  • Дмитриев Леонард Макарович
  • Алферов Вадим Иванович
  • Багиров Лев Аркадьевич
  • Фейгин Владимир Исаакович
RU2272973C1
СПОСОБ РАЗДЕЛЕНИЯ УГЛЕВОДОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СМЕСИ 2014
  • Багиров Лев Аркадьевич
  • Дмитриев Леонард Макарович
  • Фейгин Владимир Исаакович
  • Имаев Салават Зайнетдинович
RU2568215C1
Способ и установка выделения из природного газа целевых фракций 2020
  • Имаев Салават Зайнетдинович
RU2749628C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО РАЗДЕЛЕНИЯ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ (ВАРИАНТЫ) 2004
  • Имаев Салават Зайнетдинович
  • Дмитриев Леонард Макарович
  • Алферов Вадим Иванович
  • Багиров Лев Аркадьевич
  • Фейгин Владимир Исаакович
RU2272972C2
Способ низкотемпературной подготовки природного газа и установка для его осуществления 2020
  • Кубанов Александр Николаевич
  • Федулов Дмитрий Михайлович
  • Снежко Даниил Николаевич
  • Цацулина Татьяна Семеновна
  • Клюсова Наталья Николаевна
  • Прокопов Андрей Васильевич
  • Воронцов Михаил Александрович
  • Грачев Анатолий Сергеевич
  • Атаманов Григорий Борисович
RU2761489C1
СПОСОБ СЖИЖЕНИЯ СЫРЬЕВОГО ПОТОКА ПРИРОДНОГО ГАЗА И УДАЛЕНИЯ ИЗ НЕГО АЗОТА И УСТРОЙСТВО (ВАРИАНТЫ) ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Отт Кристофер Майкл
  • Кришнамурти Говри
  • Чэнь Фэй
  • Лю Ян
  • Робертс Марк Джулиан
RU2702829C2
СПОСОБ ПЕРЕРАБОТКИ ГАЗООБРАЗНОЙ СМЕСИ ЛЕГКИХ УГЛЕВОДОРОДОВ, СОДЕРЖАЩЕЙ КОМПОНЕНТЫ C, И ЖИДКОЙ НЕСТАБИЛЬНОЙ УГЛЕВОДОРОДНОЙ ФРАКЦИИ 2001
  • Фалькевич Г.С.
  • Виленский Л.М.
  • Ростанин Н.Н.
  • Иняева Г.В.
  • Ростанина Е.Д.
RU2184135C1
СПОСОБ (ВАРИАНТЫ) И УСТРОЙСТВО (ВАРИАНТЫ) ДЛЯ ПОЛУЧЕНИЯ ОБЕДНЕННОГО АЗОТОМ ПРОДУКТА СПГ 2015
  • Чэнь Фэй
  • Лю Ян
  • Кришнамурти Говри
  • Отт Кристофер Майкл
  • Робертс Марк Джулиан
RU2702074C2
СПОСОБ КОМПЛЕКСНОГО ИЗВЛЕЧЕНИЯ ЦЕННЫХ ПРИМЕСЕЙ ИЗ ПРИРОДНОГО ГЕЛИЙСОДЕРЖАЩЕГО УГЛЕВОДОРОДНОГО ГАЗА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ АЗОТА 2014
  • Мнушкин Игорь Анатольевич
RU2597081C2
СПОСОБ И СИСТЕМА, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ОТДЕЛЕНИЯ ЛЕГКИХ УГЛЕВОДОРОДОВ 2019
  • Ло Шуцзюань
  • Ли Дунфэн
  • Чжан Минсэнь
  • Ляо Лихуа
  • Ли Янь
  • Лю Чжисинь
  • Ли Чуньфан
  • Тянь Цзюнь
RU2800870C2

Иллюстрации к изобретению RU 2 514 859 C2

Реферат патента 2014 года СПОСОБ РАЗДЕЛЕНИЯ СМЕСИ ГАЗОВ

Изобретение относится к технике переработки попутного или природного газа, а именно к процессу низкотемпературной сепарации компонент газа. Способ разделения смеси газов включает охлаждение смеси, расширение продуктов, получаемых из смеси, прокачивание по крайней мере части продуктов через ректификационную колонну, расширение смеси в закрученном потоке в сопле с разделением потока на поток, обогащенный компонентами тяжелее метана, и поток, обедненный этими компонентами, нагрев обедненного потока за счет охлаждения продуктов, получаемых из смеси. При этом нагретый обедненный газовый поток сжимают в компрессоре, охлаждают в аппарате воздушного охлаждения, часть полученного газового продукта используют в качестве выходного продукта, другую часть дополнительно охлаждают, расширяют, продукты расширения направляют в колонну и/или смешивают с газофазными продуктами, поступающими из колонны в сопло. Изобретение позволяет увеличить степень очистки выходного газа. 4 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 514 859 C2

1. Способ разделения смеси газов, включающий охлаждение смеси, прокачивание части получаемых из смеси продуктов через ректификационную колонну, расширение, по крайней мере, части продуктов в закрученном потоке в сопле с разделением потока на поток, обогащенный компонентами тяжелее метана и поток, обедненный этими компонентами, нагрев обедненного потока за счет охлаждения продуктов, получаемых из смеси, отличающийся тем, что нагретый обедненный поток сжимают в компрессоре, охлаждают в аппарате воздушного охлаждения, часть полученного газа используют в качестве выходного продукта, другую часть дополнительно охлаждают, расширяют, продукты расширения направляют в колонну и/или смешивают с газофазными продуктами, поступающими из колонны в сопло.

2. Способ по п.1, отличающийся тем, что обогащенный поток или его часть используют в качестве хладагента для охлаждения смеси или продуктов, получаемых из смеси, сжимают, охлаждают с помощью аппарата воздушного охлаждения и направляют в смесь.

3. Способ по п.1 или п.2, отличающийся тем, что расширение дополнительно охлажденной части газа проводят в турбодетандере или в дроссельном клапане, и/или сопле.

4. Способ по п.1, отличающийся тем, что в обогащенный поток добавляют смесь и/или продукты, получаемые из смеси, имеющие температуру выше температуры точки росы обогащенного потока.

5. Способ по п.1, отличающийся тем, что дополнительно охлажденную часть газа используют в эжекторе в качестве эжектирующего или эжектируемого газа при смешении с продуктами, получаемыми из смеси газов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2514859C2

СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА (ВАРИАНТЫ) 2004
  • Имаев Салават Зайнетдинович
  • Дмитриев Леонард Макарович
  • Алферов Вадим Иванович
  • Багиров Лев Аркадьевич
  • Фейгин Владимир Исаакович
RU2272973C1
СПОСОБ ОЖИЖЕНИЯ ПРИРОДНОГО ГАЗА 2003
  • Пошернев Н.В.
  • Ходорков И.Л.
RU2238489C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО РАЗДЕЛЕНИЯ ПОПУТНЫХ НЕФТЯНЫХ ГАЗОВ (ВАРИАНТЫ) 2004
  • Имаев Салават Зайнетдинович
  • Дмитриев Леонард Макарович
  • Алферов Вадим Иванович
  • Багиров Лев Аркадьевич
  • Фейгин Владимир Исаакович
RU2272972C2
US 2002095062 A1, 18.07.2002
US 6560989 B1, 13.05.2003

RU 2 514 859 C2

Даты

2014-05-10Публикация

2012-02-10Подача