Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры.
Известен способ измерения коэффициента динамической вязкости (далее вязкости) сред, включающий определение момента силы трения на поверхности погруженного в испытуемую среду шпинделя формы цилиндр (конус, диск) при различных скоростях сдвига для испытуемой и эталонной сред (Мидлман С. Течение полимеров. Пер. с англ. Ю.Н.Панова под ред. А.Я.Малкина. - М.: Мир, 1971. - 360 с.). Способ реализован в ротационных вискозиметрах (Мидлман С. Течение полимеров. Пер. с англ. Ю.Н.Панова под ред. А.Я.Малкина. - М.: Мир, 1971. - 360 с.). Недостатком способа является невозможность создания на поверхности шпинделя условий однородности полей механических величин, что ведет к возникновению погрешности расчета касательных напряжений, сдвиговых скоростей деформаций и, как следствие, вязкости. Другим недостатком способа является сложность конструкции устройства, реализующего измерение вязкости при различных значениях гидростатического давления в испытуемой среде. Существенным совпадающим признаком аналога с заявляемым изобретением является процедура измерения момента силы трения на поверхности контакта среды и элемента устройства измерения вязкости.
Наиболее близким по физическим условиям течения испытуемой среды является способ, включающий прокачку испытуемой среды через канал известного размера и определение напряжения и скорости сдвига на стенке канала (Патент СССР №1716388, МПК G01N 11/04, опубл. 1992 г.). Способ реализован в капиллярных вискозиметрах. Недостатком способа является невозможность создания в объеме и на поверхности канала условий однородности гидростатического давления, так как процесс течения испытуемой среды обеспечивается именно перепадом давления по длине канала, что ведет к невозможности исследования сред, реологические свойства которых зависят от величины гидростатического давления. Существенными совпадающими признаками аналога (прототипа) с заявляемым изобретением являются физические условия течения, а именно реализация Пуазейлевского течения (Мидлман С. Течение полимеров. Пер. с англ. Ю.Н.Панова под ред. А.Л.Малкина. - М.: Мир, 1971. - 360 с.), а также наличие процедуры определения касательного напряжения и сдвиговой скорости деформации на поверхности канала.
Задача, на решение которой направлено изобретение, состоит в получении способа измерения вязкости сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры.
Поставленная задача достигается тем, что в отличие от прототипа течение испытуемой среды происходит в замкнутом канале формы тор под действием сил инерции и трения. Такое течение при определенных геометрических, кинематических и статических параметрах устройства обеспечивает с требуемой точностью выполнение требуемых условий однородности полей термомеханических величин. Определение величин касательного напряжения, скорости сдвиговой деформации и температуры испытуемой среды на поверхности тора, а также гидростатического давления во всем объеме тора, позволяет определить величину вязкости при различных значениях выше перечисленных параметров. Предлагаемый способ заключается в плавном разгоне и резкой остановке тора с испытуемой средой с последующим в процессе инерционного торможения измерением момента силы трения и профиля скорости среды вблизи стенки тора.
Сущность изобретения заключается в следующем.
По сути, вязкость является коэффициентом пропорциональности между компонентами девиатора напряжений и девиатора скоростей деформаций в обобщенном законе Р.Гука, описывающем реологическое поведение изотропных вязкопластичных сред в рамках основных положений механики сплошных сред и безмоментной теории напряжений (Кучеряев Б.В. Механика сплошных сред (теоретические основы обработки давлением композитных металлов с задачами и решениями, примерами и упражнениями): Учебник для вузов. М.: МИСиС, 2006. - 604 с.):
где Dσ - девиатор напряжений с компонентами sij;
µ - вязкость;
Dξ - девиатор скоростей деформаций с компонентами eij.
Поэтому для определения вязкости необходимо знать значения соответствующих компонент тензора напряжений и скоростей деформаций в какой-либо малой окрестности движущейся среды. В случае если поля физических величин обладают свойством однородности на какой-то поверхности и (или) в каком-то объеме, то значения выше названных компонент могут быть определены по сравнительно легко измеряемым интегральным характеристикам. Например, по известному моменту силы трения на поверхности контакта с испытуемой средой при условии, что вид напряженного состояния известен и напряженное состояние является однородным, на этой поверхности можно легко найти значение касательного напряжения.
Рассмотрим изотермическое инерционное тормозящееся течение вязкой несжимаемой среды в канале формы тор, характеризуемом радиусом образующей окружности r и расстоянием от центра оси симметрии тора до центра образующей окружности R. Среда закачана в тор под давлением
В криволинейных координатах скорость движения среды характеризуется однокомпонентным вектором скорости
Уравнения движения с учетом симметрии полей исследуемых термомеханических величин относительно оси тора ∂/∂β2=0, что для поля скоростей совпадает с условием несжимаемости среды, имеют вид:
где p0 - гидростатическое давление;
ρж - плотность среды (жидкости).
Используя аппарат теории подобия и анализа размерностей, можно выполнить оценку геометрических параметров тора, начальной скорости его вращения, а также свойств среды, при которых характеристики напряженно-деформированного состояния движущейся среды на поверхности тора и поле давления во всем объеме тора будут с достаточной степенью точности однородны. Процедура обезразмеривания переменных величин представлена в таблице 1. В качестве обезразмеривающей величины вязкости µ0 предлагается использовать вязкость, близкой по свойствам ньютоновской жидкости, а в качестве обезразмеривающей величины времени t0 - время инерционного движения среды с момента остановки тора до момента остановки среды.
Компоненты градиента скорости ∂V2/∂β1 и (1/h3)(∂V2/∂β3) вблизи поверхности тора можно сравнить в начальный момент времени, тогда компонента ∂V2/∂β1 обусловлена перепадом в результате условия прилипания среды к неподвижной стенке тора и при допущении о линейности составит приблизительно ∂V2/∂β1≈ω0R/r, компонента (1/h3)(∂V2/∂β3) обусловлена разницей окружных скоростей и составит приблизительно (1/h3)(∂V2/∂β3)≈ω02r/πr. Отношение компонент градиента составит приблизительно R/r, поэтому при значительной разнице радиусов вкладом компоненты градиента (1/h3)(∂V2/∂β3) в вектор градиента можно пренебречь.
величины (если известны)
С целью оценки значимости отдельных членов в уравнениях (1)-(4) вводятся безразмерный геометрический критерий γ=r/R, число Рейнольдса Re=(rV0ρж)/µ0, число Струхаля Sh=r/(t0V0) и аналог числа Эйлера
Таким образом, при условии малости геометрического параметра (γ≤10-2) можно с погрешностью порядка γ утверждать, что компоненты девиатора скоростей деформаций (3) имеют вид:
Девиатор скоростей деформаций (5) однороден по всей поверхности тора. Для выполнения с заданной точностью условия однородности поля давления p0 по всему объему тора гидродинамический напор
Таким образом, при выполнении условий малости геометрического параметра (γ≤10-2), а также кинематических и статических условий
таблицы 3 можно с точностью порядка 100% и меньше определять вязкость испытуемой среды по формуле:
Компонента девиатора напряжений s12 является, по сути, касательным напряжением на поверхности тора, возникающим по причине инерционного тормозящегося течения испытуемой среды, и может быть определена на поверхности тора по известному моменту силы трения М:
Градиент скорости ∂V2/∂β1 может быть определен по результатам измерения скорости течения с помощью доплеровского измерителя скорости (Мидлман С. Течение полимеров. Пер. с англ. Ю.Н.Панова под ред. А.Я.Малкина. - М.: Мир, 1971. - 360 с.).
Способ осуществляется следующим образом.
В тор под давлением
Предложенный способ измерения вязкости позволяет исследовать вязкость сред со сложными реологическими свойствами, зависящими одновременно от скорости сдвига, давления и температуры в широком диапазоне выше названных параметров. Выработанные рекомендации по выбору параметров и условий исследования позволяют производить высокоточные измерения вязкости.
название | год | авторы | номер документа |
---|---|---|---|
ИНЕРЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ВЯЗКОСТИ | 2014 |
|
RU2589753C2 |
ИНЕРЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ВЯЗКОСТИ НЕНЬЮТОНОВСКИХ ЖИДКОСТЕЙ | 2022 |
|
RU2789667C1 |
ИНЕРЦИОННЫЙ ВИСКОЗИМЕТР | 2012 |
|
RU2522718C2 |
СПОСОБ РАСЧЕТА ВЯЗКОСТИ | 2011 |
|
RU2562921C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ РЕОЛОГИЧЕСКИХ СВОЙСТВ ТВЕРДОЖИДКИХ СРЕД | 1990 |
|
RU2025747C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ И УГЛОВОЙ ОРИЕНТАЦИИ ТЕЛЕЖКИ ТРАНСПОРТНОГО СРЕДСТВА | 2006 |
|
RU2303240C1 |
ЭМУЛЬСИОННЫЙ СОСТАВ ДЛЯ ВРЕМЕННОЙ ИЗОЛЯЦИИ ПЛАСТА | 2008 |
|
RU2379473C1 |
ПОРОДОРАЗРУШАЮЩИЙ ИНСТРУМЕНТ | 1997 |
|
RU2127349C1 |
СПОСОБ АБРАЗИВНОЙ ОБРАБОТКИ | 1990 |
|
SU1792056A1 |
СПОСОБ ОБРАБОТКИ РАДИОАКТИВНЫХ ОТХОДОВ | 1999 |
|
RU2156001C1 |
Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры. Способ измерения вязкости включает прокачку испытуемой среды через канал круглой формы поперечного сечения и определение параметров движения среды, а именно касательного напряжения и сдвиговой скорости деформации на поверхности канала, по которым определяют вязкость среды. При этом канал имеет замкнутую форму тора, а прокачка испытуемой среды происходит под действием сил инерции и трения среды, возникших в результате резкой остановки вращающегося вокруг своей оси тора. Техническим результатом является повышение точности определения вязкости сред со сложными реологическими свойствами, зависящими одновременно от скорости сдвига, давления и температуры в широком диапазоне перечисленных параметров. 3 табл.
Способ измерения вязкости, включающий прокачку испытуемой среды через канал круглой формы поперечного сечения и определение параметров движения среды, а именно касательного напряжения и сдвиговой скорости деформации на поверхности канала, по которым определяют вязкость среды, отличающийся тем, что канал имеет замкнутую форму тора, а прокачка испытуемой среды происходит под действием изменяющихся во времени сил инерции и трения среды, возникших в результате резкой остановки вращающегося вокруг своей оси тора.
Способ определения вязкости жидкой фазы | 1989 |
|
SU1745681A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ ЖИДКИХ СРЕД В ТРУБОПРОВОДАХ | 1992 |
|
RU2065146C1 |
WO 2011107472 A9 09.09.2011 | |||
US 4539837 A 10.09.1985 |
Авторы
Даты
2014-05-27—Публикация
2012-11-06—Подача