Изобретение относится к системам для обнаружения в воздухе токсичных и опасных веществ с целью обеспечения промышленной безопасности и предотвращения аварийных ситуаций.
Азотная кислота (HNO3) широко используется в промышленности. Причем концентрация паров азотной кислоты не должна превышать: 2 мг/м3 в воздухе рабочей зоны и 0,4 мг/м3 в воздухе населенных пунктов. Тем не менее проведенный патентный поиск не позволил обнаружить ни одного патента, связанного с определением концентрации паров азотной кислоты в воздухе. По этой причине в качестве аналогов пришлось принять способы и устройства для измерения концентрации NO2 в воздухе.
Известен способ определения концентрации NO2 в воздухе с использованием сенсора на основе МДП-структуры (см., например, портативный газоанализатор NO2 в диапазоне концентрации 0,02-2 ppm на основе МДП-сенсора. Измерительная техника, 2004 г., №11, с.541). Однако этот газоанализатор позволяет измерять с высокой чувствительностью только NO2 в воздухе, и нет сведений о его применении для контроля паров азотной кислоты в воздухе.
Известен также способ определения концентрации NO2 в воздухе с использованием электрохимических ячеек (см. ячейки электрохимические Тип 2N2-5 (2N2-5Л). Паспорт AHCM.418425.002.N2-002ПС. ООО «Аналитхимавтоматика»). Однако и в отношении этих сенсоров нет сведений об их применении для контроля паров азотной кислоты в воздухе.
Задача изобретения состояла в разработке высокоспецифичного, стабильного и чувствительного газоанализатора для измерения паров азотной кислоты в воздухе.
Указанная задача решается тем, что предложен способ измерения концентрации HNO3 в воздухе, в котором согласно изобретению воздух, содержащий пары азотной кислоты, пропускают через холодный реактор, содержащий катализатор, измеряют текущую (фоновую) концентрацию NO2 в воздухе (C1), значение которой запоминают в микропроцессорном блоке, затем по команде от микропроцессорного блока производят нагрев катализатора до температуры 350-550°C, измеряют концентрацию NO2, выделяемого при термическом разложении паров азотной кислоты (C2), значение которой запоминают в микропроцессорном блоке и определяют концентрацию паров азотной кислоты в воздухе по формуле:
C=1.37·C2·k-C1,
где 1,37 - отношение молярной массы HNO3 к молярной массе NO2; k - коэффициент эффективности реактора, который определяется экспериментально.
Задача решается также тем, что предложено устройство для измерения концентрации HNO3 в воздухе, содержащее воздухозаборную трубку, побудитель расхода для прокачки воздуха через воздухозаборную трубку, сенсор для измерения концентрации NO2 в воздухе и микропроцессорный блок для управления работой устройства и запоминания значений концентрации NO2, в котором согласно изобретению на входе в воздухозаборную трубку установлен реактор с периодически нагреваемым катализатором. Другим отличием устройства является то, что на выходе реактора установлен фильтр, заполненный AgNO3.
В другом варианте выполнения устройства воздухозаборная трубка с побудителем расхода, установленная в ней, соединена с двумя газовыми каналами, в одном из которых установлен сенсор на основе МДП-структуры, а в другом электрохимический сенсор, выходы которых соединены с микропроцессорным блоком, причем на входе в каждый канал, установлен запорный клапан, управляемый от микропроцессорного блока.
Благодаря отмеченным выше особенностям способа измерения и устройства для его осуществления обеспечивается достижение технического результата, который состоит в том, что достигается измерение концентрации паров азотной кислоты в воздухе. Сущность изобретения поясняется чертежами.
На фиг.1 изображена принципиальная схема первого варианта устройства.
На фиг.2 представлена принципиальная схема второго варианта устройства.
В первом варианте выполнения устройства оно содержит воздухозаборную трубку 1, реактор 2 с катализатором, в качестве которого может быть использована платиновая проволочка, фильтр 3, заполненный AgNO3, блок сенсора 4 и побудитель расхода 5. Блок 6 управления сенсором и блок 7 управления реактором соединены с микропроцессорным блоком 8, предназначенным для управления работой устройства, обработки сигнала и выдачи информации о текущем значении концентрации на дисплей (на фиг.1, 2 не показан) или во внешние цепи по интерфейсу.
В соответствии с заявленным способом устройство работает следующим образом. Анализируемый воздух, содержащий пары HNO3 прокачивается через воздухозаборную трубку 1 и реактор 2 и поступает на сенсор 4 NO2. Фильтр 3 пропускает только молекулы NO2. Цикл измерений следующий:
1. Реактор 2 холодный. Сенсор 4 измеряет только текущую (фоновую) концентрацию молекул NO2 в воздухе (C1), значение которой запоминается в микропроцессорном блоке 8.
2. По команде микропроцессорного блока 8, поступающей на блок 7 управления реактора 2, происходит нагрев катализатора до температуры 350-550°C. При этом молекулы азотной кислоты подвергаются термическому распаду по следующей реакции:
4HNO3→4NO2+2H2O+O2
Сенсор 4 измеряет только концентрацию NO2, значение которой запоминается в микропроцессорном блоке как C2. Далее микропроцессорный блок рассчитывает концентрацию азотной кислоты, которая равна:
C=1.37·C2·k-C1,
где 1,37 - отношение молярной массы HNO3 к молярной массе NO2; k - коэффициент эффективности реактора, который определяется экспериментально.
Второй вариант выполнения устройства (фиг.2) характеризуется тем, что выход воздухозаборной трубки 1 с побудителем 5 расхода в ней соединен с двумя газовыми каналами 9 и 10, в одном из которых установлен сенсор 4 на основе МДП-структуры, а в другом электрохимический сенсор 11, выходы которых соединены с микропроцессорным блоком 8. При этом на входе в каждый канал 9 и 10 установлены запорные клапаны 12 и 13, управляемые микропроцессорным блоком 8.
Работа этого варианта устройства характеризуется тем, что сравнивая показания от двух сенсоров NO2 4 и 11, микропроцессорный блок 8 осуществляет выбор одного из них, перекрывая запорный вентиль 12 или 13, ведущий к другому сенсору 4 или 11. При этом в качестве сенсора 4 может быть использован сенсор на основе МДП-структуры (обладает более высокой чувствительностью к NO2), а в качестве сенсора 11 может быть использован электрохимический сенсор, более приспособленный к повышенным концентрациям NO2.
название | год | авторы | номер документа |
---|---|---|---|
Способ окисления аммиака и система, подходящая для его осуществления | 2014 |
|
RU2646643C2 |
ПЕРЕНОСНОЙ ГАЗОАНАЛИЗАТОР | 2024 |
|
RU2822866C1 |
Получение красного железоокисного пигмента | 2013 |
|
RU2649430C2 |
СПОСОБ УДАЛЕНИЯ NO И NO ИЗ ОСТАТОЧНОГО ГАЗА ПРОИЗВОДСТВА АЗОТНОЙ КИСЛОТЫ | 2001 |
|
RU2259227C2 |
ПОЛУЧЕНИЕ СУСПЕНЗИИ КРАСНОГО ЖЕЛЕЗООКИСНОГО ПИГМЕНТА | 2017 |
|
RU2758643C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННЫХ ПАЛЛАДИЕВЫХ КАТАЛИЗАТОРОВ | 2004 |
|
RU2282498C2 |
СПОСОБ И УСТРОЙСТВО ОТБОРА ПРОБ ВОЗДУХА ДЛЯ ПОСЛЕДУЮЩЕГО АНАЛИЗА ГАЗООБРАЗНЫХ ИЛИ АЭРОЗОЛЬНЫХ ПРИМЕСЕЙ | 2004 |
|
RU2298776C2 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ АЗОТА | 2000 |
|
RU2156730C1 |
СПОСОБ ПРОИЗВОДСТВА АЗОТНОЙ КИСЛОТЫ | 2000 |
|
RU2174946C1 |
СПОСОБ ПРОИЗВОДСТВА АЗОТНОЙ КИСЛОТЫ | 1997 |
|
RU2127224C1 |
Изобретение относится к системам для обнаружения в воздухе токсичных и опасных веществ. Предложен способ измерения концентрации HNO3 в воздухе, в котором согласно изобретению воздух, содержащий пары азотной кислоты, пропускают через холодный реактор, измеряют текущую (фоновую) концентрацию NO2 в воздухе, значение которой запоминают в микропроцессорном блоке как C1, затем нагревают реактор до температуры 250-350°C, измеряют концентрацию NO2, выделяемого при термическом разложении HNO3, значение которой запоминают в микропроцессорном блоке как С2 и определяют концентрацию паров азотной кислоты в воздухе по определенной формуле. Также предложено устройство для осуществления описанного выше способа, содержащее воздухозаборную трубку (1), побудитель расхода (5) для прокачки воздуха, сенсор (4) для измерения концентрации NO2 в воздухе и микропроцессорный блок (8) для управления работой устройства и запоминания значений концентрации NO2, в котором согласно изобретению на входе в воздухозаборную трубку (1) установлен реактор (2) с периодически нагреваемым катализатором. 2 н. и 2 з.п. ф-лы, 2 ил.
1. Способ измерения концентрации азотной кислоты (HNO3) в воздухе, отличающийся тем, что воздух, содержащий пары азотной кислоты, пропускают через холодный реактор, содержащий катализатор, и измеряют с помощью сенсора текущую концентрацию NO2 в воздухе, значение которой запоминают в микропроцессорном блоке как C1, затем по команде от микропроцессорного блока производят нагрев катализатора до температуры 350-550°C и измеряют концентрацию NO2, выделяемого при термическом разложении паров азотной кислоты, запоминая ее значение в микропроцессорном блоке как C2, и определяют расчетным путем с помощью микропроцессорного блока концентрацию паров азотной кислоты в воздухе по формуле:
C=1.37·C2·k-C1,
где 1,37 - отношение молярной массы HNO3 к молярной массе NO2; k - коэффициент эффективности реактора, который определяется экспериментально.
2. Устройство для измерения концентрации HNO3 в воздухе, содержащее воздухозаборную трубку, побудитель расхода для прокачки воздуха через воздухозаборную трубку, сенсор для измерения концентрации NO2 в воздухе и микропроцессорный блок для управления работой устройства и запоминания значения концентрации NO2, отличающееся тем, что на входе в воздухозаборную трубку установлен реактор с периодически нагреваемым катализатором.
3. Устройство по п.2, отличающееся тем, что на выходе реактора установлен фильтр, заполненный AgNO3.
4. Устройство по п.2 или 3, отличающееся тем, что воздухозаборная трубка с побудителем расхода, установленным в ней, соединена с двумя газовыми каналами, в одном из которых установлен сенсор NO2 на основе МДП-структуры, а в другом - электрохимический сенсор, выходы которых соединены с микропроцессорным блоком, причем на входе в каждый канал установлен клапан, управляемый от микропроцессорного блока.
RU2919129459А , 27.11.2011 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ЯДОВИТЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ | 1993 |
|
RU2093818C1 |
Способ определения азотной кислоты и оксидов азота методом вольтамперометрии на твердых электродах | 1990 |
|
SU1772713A1 |
Пневматическое вычислительное устройство для определения концентрации азотной кислоты | 1974 |
|
SU507870A1 |
Авторы
Даты
2014-06-10—Публикация
2013-02-06—Подача