Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химическим связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.
Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас. %: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 / пат. Российской Федерации №2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова B.C., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. №2010122114. заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2/[1].
Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.
Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас. %: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м3); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); H3PO4 - 12,44-12,45 (260 кг/м3) / Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42. / [2].
Недостатком указанного состава керамической массы является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°C и низкая термостойкость.
Задача изобретения - повышение качества жаростойкого композита.
Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов.
Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно вводят шлаки от выплавки ферротитана с содержанием, мас. %: SiO2 - 2,5; Аl2O3 - 72,18; TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5 при следующем соотношении компонентов, мас. %:
Шлаки от выплавки ферротитана имеют плотную структуру, прочность при сжатии более 100 МПа, огнеупорность выше 1770°C, температура под нагрузкой 0,2 МПа выше 1700°C.
Ферротитан - это ферросплав, содержащий до 35 или более 60% Ti, 1-7% Al, 1-4,5% Si, до 3% Сu (остальное Fe и примеси); получают внепечным алюминотермическим способом из ильменитового концентрата и титановых отходов (низкопроцентный ферротитан) или сплавлением в электрической печи железных и титановых отходов (высокопроцентный ферротитан). Ферротитан применяют для раскисления и легирования стали.
Химический оксидный состав шлаков представлен в таблице 1, а поэлементный в таблице 2.
Введение в составы жаростойких композитов шлака от выплавки ферротитана за счет повышенного содержания в нем Al2O3 позволит значительно повысить термостойкость и кислотостойкость кислотоупоров.
В качестве фосфатных связующих использовалась ортофосфорная кислота H3PO4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Al(H2PO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4)3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n(H2PO4)2, где n=1, 2, 3.
Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.
Следует отметить, что для своего затвердевания и набора марочной прочности жаростойкие бетоны требуют особую термообработку.
Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3 - нагревание до 500°C с подъемом температуры до 200°C со скоростью 60°C/час и до 500°C - 150°C/час, выдерживание в течение 4 часов, охлаждение вместе с печью.
В таблице 4 представлены физико-механические показатели жаростойкого бетона.
Как видно из таблицы 4 жаростойкий бетон из предложенных составов имеет более высокие показатели по механической прочности и термостойкости, чем прототип.
Полученное техническое решение при использовании шлаков от выплавки ферротитана позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.
Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2571780C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2576537C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2015 |
|
RU2580536C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2575783C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2574438C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2015 |
|
RU2576067C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2580866C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2521980C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2524155C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2015 |
|
RU2592927C1 |
Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно содержит шлак от выплавки ферротитана с содержанием, мас.%: SiO2 - 2,5; Al2O3 - 72,18; TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, ортофосфорная кислота H3PO4 10-15, шлак от выплавки ферротитана 24-30. 4 табл.
Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит шлак от выплавки ферротитана с содержанием, мас.%: SiO2 - 2,5; Al2O3 - 72,18; TiO2 - 10,3; Fe2O3 - 0,34; CaO - 11,4; MgO - 3,5, при следующем соотношении компонентов, мас.%:
ХЛЫСТОВ А.И | |||
Повышение эффективности жаростойких композитов за счёт применения химических связующих", Строительные материалы, оборудование,технологии ХХI века, 2012, N9, с.38-42 | |||
0 |
|
SU404813A1 | |
Огнеупорная масса | 1987 |
|
SU1578107A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Огнеупорная масса для футеровки индукционных тигельных печей | 1985 |
|
SU1301811A1 |
Жаростойкий торкрет-бетон | 1980 |
|
SU876593A1 |
Способ изготовления сопротивлений из манганиновой проволоки в стеклянной изоляции | 1960 |
|
SU131812A1 |
БЕТОННАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ | 0 |
|
SU299482A1 |
Бетонная смесь | 1975 |
|
SU555064A1 |
US 6783799 В1, 31.08.2004 | |||
Устройство для изготовления пленки | 1983 |
|
SU1147442A1 |
Авторы
Даты
2014-06-27—Публикация
2013-01-21—Подача