КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ Российский патент 2014 года по МПК C04B28/34 C04B111/20 

Описание патента на изобретение RU2524155C1

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.

Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас.%: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 / пат. Российской Федерации №2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. №2010122114. заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2/ [1].

Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.

Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас.%: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м3); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); H3PO4 - 12,44-12,45 (260 кг/м3) / Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42./ [2].

Недостатком указанного состава композиции является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°C и низкая термостойкость.

Сущность изобретения - повышение качества жаростойкого бетона.

Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойкого бетона.

Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно вводят обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием оксидов, мас.%: SiO2 - 4,75; Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13 при следующем соотношении компонентов, мас.%:

отработанный катализатор ИМ-2201 10-15 щебень 33-40 песок 10-13 H3PO4 10-15 обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием оксидов, мас.%: SiO2 - 4,75 Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5 R2O - 5,13 24-30

Солевой алюминиевый шлак является отходами алюминиевого производства. По показателям острой токсичности в эксперименте на теплокровных животных (мыши) и двух видов гидробионитов (ветвистоусые рачки Daphnia magna Straus и зеленые протококковые водоросли Scenedesmus guadricauda) солевые отходы относятся к III классу опасности по степени воздействия на организм и к IV классу опасности для окружающей среды. Солевые алюминиевые шлаки имеют следующий химический состав состава, мас.%: NaCl - 10,25; CaO+CaCO3 - 14,28; MgO+MgCO3 - 15,30; FeCl3 - 0,001; SiO2 - 3,10; Al2O3 - 41,282; KCl - 5,35; CuCl2 - 0,001; алкилмеркаптиты Al - 0,545; предельные углеводороды - 0,001; Al (металлический) - 9,89.

Солевой алюминиевый шлак обжигался при температуре 1000°C до химического состава, представленного в таблицах 1 и 2.

Таблица 1 Химические составы алюмосодержащих отходов производств Отход Содержание оксидов, мас.% SiO2 Al2O3 Fe2O CaO MgO Cr2O3 R2O П.п.п 1. Обожженный солевой алюминиевый шлак 4,75 77,3 1,6 2,57 7,5 - 5,13 1,15 2. Отработанный катализатор ИМ-2201 7,90 74,5 0,15 - 0,10 14,8 1,57 - Таблица 2 Поэлементный химический состав отходов Отход Концентрация, мас.% O Al Mg Na Ca Fe Si Cr Обожженный солевой алюминиевый шлак 66,34 26,96 2,73 1,90 0,45 0,14 1,48 - Катализатор ИМ-2201 60,74 26,58 - 2,81 - - 2,82 8,1

После обжига солевого алюминиевого шлака химический состав его значительно обогатился оксидом алюминия (таблица 1), что будет способствовать повышению физико-механических свойств жаростойких композиций.

Для изготовления жаростойких бетонов использовались щебень и песок, отвечающие требованиям для производства бетонов:

А) щебень, отвечающий требованиям ГОСТа Г 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические условия» М 600, 800-1000, со средней плотностью зерен от 2,0 до 2,5 кг/м3 из карбонатных пород, добываемый в Самарской области, фракции 5-10 мм;

Б) песок, отвечающий требованиям ГОСТ 8736-93 «Песок для строительных работ. Технические условия». Песок речной, добываемый в Самарской области, имел следующие показатели: средняя плотность в сухом состоянии - 1,5 кг/м3; содержание илистых, пылевидных и глинистых частиц не более - 0,7% по массе; истинная плотность песка речного - 2,65 г/см3; наличие суглинка, комков глины и прочих засоряющих примесей не более - 0,05%; модуль крупности - 1,68.

В качестве фосфатных связующих использовалась ортофосфорная кислота H3PO4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Al(H2PO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4)3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n(H2PO4)2, где=1, 2, 3.

Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.

Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие бетоны требуют особую термообработку.

Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3 - нагревание до 500°C с подъемом температуры до 200°C со скоростью 60°C/час и до 500°C-150°C/час, выдерживание в течение 4 часов, охлаждение вместе с печью.

Таблица 3 Составы для получения жаростойких бетонов Компоненты Содержание компонентов, мас.% 1 2 3 Отработанный катализатор ИМ-2201 10 12 15 Щебень 40 38 33 Песок 10 11 13 H3PO4 10 12 15 Обожженные солевые алюминиевые шлаки 30 27 24

В таблице 4 представлены физико-механические показатели жаростойкого бетона.

Таблица 4 Физико-механические показатели жаростойкого бетона, после твердения и нагревания до температуры 1200°C Показатели Составы Прототип 1 2 3 Термостойкость, °C 34 38 41 29 Механическая прочность на сжатие, МПа 55,3 58,5 61,8 46 Огнеупорность, °C 1640 1670 1680 - Температура под нагрузкой 0,2 МПа, °C 1550 1580 1590 -

Полученное техническое решение при использовании обожженного солевого алюминиевого шлака позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.

Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Пат. Российской Федерации №2440312, МПК C04B 14/24. Композиция для производства пористого заполнителя. / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. - №2010122114; заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2.

2. Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42.

Похожие патенты RU2524155C1

название год авторы номер документа
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ 2014
  • Абдрахимова Елена Сергеевна
RU2575783C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ 2014
  • Абдрахимова Елена Сергеевна
  • Абдрахимов Владимир Закирович
RU2568443C2
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ 2013
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Колпаков Александр Викторович
RU2521244C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ 2013
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Репин Михаил Викторович
RU2528643C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ 2014
  • Абдрахимова Елена Сергеевна
RU2580866C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ 2013
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Колпаков Александр Викторович
RU2521005C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ 2013
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Колпаков Александр Викторович
RU2521980C1
Композиция для изготовления жаростойких композитов 2016
  • Абдрахимова Елена Сергеевна
RU2616199C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ 2014
  • Абдрахимова Елена Сергеевна
  • Абдрахимов Владимир Закирович
RU2553115C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ 2013
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Колпаков Александр Викторович
RU2526090C1

Реферат патента 2014 года КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ

Изобретение относится к области строительных материалов, в частности к производству жаростойкого бетона на основе химических связующих. Композиция для изготовления жаростойкого бетона, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием, мас.%: SiO2 - 4,75; Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13, при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, H3PO4 10-15, указанный солевой шлак 24-30. Технический результат - повышение прочности при сжатии и термостойкости. 4 табл.

Формула изобретения RU 2 524 155 C1

Композиция для изготовления жаростойкого бетона, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием, мас.%: SiO2 - 4,75; Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5; R2O - 5,13 при следующем соотношении компонентов, мас.%:
отработанный катализатор ИМ-2201 10-15 щебень 33-40 песок 10-13 H3PO4 10-15 обожженный солевой алюминиевый шлак при температуре 1000°C с содержанием оксидов, мас.%: SiO2 - 4,75 Al2O3 - 77,3; Fe2O3 - 1,6; CaO - 2,57; MgO - 7,5 R2O - 5,13 24-30

Документы, цитированные в отчете о поиске Патент 2014 года RU2524155C1

ХЛЫСТОВ А.И
и др
Повышение эффективности жаростойких композитов
за счет применения химических связующих, Строительные материалы,
оборудование, технологии ХХХI века, 2012, N9, с.38-42
Сырьевая смесь для приготовления жаростойкого бетона 1986
  • Абызов Александр Николаевич
  • Сергеев Сергей Иванович
  • Тюшкина Галина Леонидовна
SU1578111A1
Сырьевая смесь для приготовления бетона 1983
  • Орлов Борис Валентинович
  • Ячкина Луиза Халиловна
  • Караулов Владимир Андреевич
  • Вигдорович Григорий Израилевич
SU1209658A1
Сырьевая смесь для приготовления легкого бетона 1988
  • Мельников Александр Михайлович
  • Дудеров Юрий Григорьевич
  • Тульский Геннадий Владимирович
  • Валпетерс Станислав Викторович
  • Шейман Владимир Евгеньевич
  • Гуревич Аркадий Евсеевич
SU1527221A1
СПОСОБ РЕМОНТА ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ ЖАРОСТОЙКИМ БЕТОНОМ 2004
  • Хлыстов А.И.
  • Соколова С.В.
RU2265780C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ФОСФАТНОГО СВЯЗУЮЩЕГО 1994
  • Кучин В.Д.
RU2081079C1
СПОСОБ УТИЛИЗАЦИ ШЛАКА АЛЮМИНИЕВОГО ПРОИЗВОДСТВА 1996
  • Куценко С.А.
  • Спиридонов А.А.
  • Неженцев В.Ю.
  • Пилюзин В.И.
  • Бурцева Н.В.
  • Акимов И.Я.
RU2088544C1
СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЕВОГО ШЛАКА 1998
  • Шмотьев С.Ф.
RU2132398C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2010
  • Абдрахимова Елена Сергеевна
  • Рощупкина Ирина Юрьевна
  • Абдрахимов Владимир Закирович
  • Куликов Владимир Александрович
RU2440312C1
Устройство для захвата,переноса и укладки стопы деталей 1985
  • Дрегваль Владимир Алексеевич
SU1326521A1

RU 2 524 155 C1

Авторы

Абдрахимова Елена Сергеевна

Рощупкина Ирина Юрьевна

Абдрахимов Владимир Закирович

Даты

2014-07-27Публикация

2013-02-07Подача