Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.
Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас. %: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 /патент Российской Федерации №2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя/ Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П.Королева, №2010122114, заявл. 31.05.20910, опубл. 20.01.2012, бюл. №2/[1].
Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.
Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас. %: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м3); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); Н3РO4 - 12,44-12,45 (260 кг/м3) /Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих/ А.И.Хлыстов, С.В.Соколова, А.В.Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42/[2].
Недостатком указанного состава керамической массы является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°С и низкая термостойкость.
Сущность изобретения - повышение качества жаростойкого композита.
Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов.
Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и Н3РO4, дополнительно вводят шлаки от выплавки безуглеродистого феррохрома с содержанием, мас.%: SiO2 - 5,8; АlО3 - 54,8; Fе2О3 - 1,88; CaO - 13,82; MgO - 14,8; Сr2О3 - 5,4; R2O - 2,3 при следующем соотношении компонентов, мас.%:
Шлаки от выплавки безуглеродистого феррохрома представляют собой материал плотной порфировидной структуры красно-бурого цвета с вкраплениями шпинели. Порфировидная структура (т.е. структура, похожая на порфировую) является разновидностью зернисто-кристаллической структуры. Порода с такой структурой содержит вкрапленники больших размеров и имеет окружающую их основную массу зернисто-кристаллическую. Это напоминает сильно увеличенную порфировую структуру с вкрапленниками. Химический оксидный состав шлаков представлен в таблице 1, а поэлементный в таблице 2.
ИМ-2201
Фазовый состав шлаков представлен алюминатами состава СаО·Аl2О3 и алюмомагнезиальной хромосодержащей шпинелью. В системе CaO-Аl2O3 известны соединения 3СаО-Аl2О3, 12СаО·7Аl2O3, СаО-Аl2О3, СаО-2Аl2O3, СаО-6Аl2O3. Реакция образования алюминатов кальция в системе CaO-Аl2O3 протекает в основном в твердой фазе. При обжиге смеси CaO и Аl2O3 состава 1:1 до температуры 900°С образуется СаО·Аl2О3 в результате диффузии ионов Са2+ в решетку кристаллов Аl2O3. При 950°С наряду с увеличением количества СаО·Аl2О3 наблюдается появление 12СаО·7Аl2O3, что объясняется диффузией ионов Са2+ через слой СаО-Аl2О3. В интервале температур 1000-1100°С вследствие диффузии ионов Аl3+ через слой СаО-Аl2O3 появляется новое соединение СаО-2Аl2О3, а в интервале температур 1100-1200° СаО-3СаО-Аl2О3, образующий на границе фаз СаО/12СаО·7Аl2O3. Образование этой фазы вызывается диффузией ионов Са2+ в решетку 12СаO·7Аl2O3.
Огнеупорность шлаков - 1580-1620°С, температура деформации под нагрузкой 0,2 МПа: начало размягчения - 1280-1300°С, разрушения 1500-1550°С.
В качестве фосфатных связующих использовалась ортофосфорная кислота Н3РO4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Аl(Н2РO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4)3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n(H2PO4)2, где=1, 2, 3.
Сведения, подтверждающие возможность осуществления изобретения. Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.
Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие бетоны требуют особую термообработку.
Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3, - нагревание до 500°С с подъемом температуры до 200°С со скоростью 60°С/час и до 500°С-150°С/час, выдерживание в течение 4 часов, охлаждение вместе с печью.
В таблице 4 представлены физико-механические показатели жаростойкого бетона.
Как видно из таблицы 4, жаростойкий бетон из предложенных составов имеет более высокие показатели по механической прочности и термостойкости, чем прототип.
Полученное техническое решение при использовании шлаков от выплавки безуглеродистого феррохрома позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.
Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент Российской Федерации №2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя/ Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П.Королева. - №2010122114, заявл. 31.05.20910, опубл. 20.01.2012, бюл. №2.
2. Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих/ А.И.Хлыстов, С.В.Соколова, А.В.Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2521005C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2558567C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2521244C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2015 |
|
RU2580536C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2526090C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2524155C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2015 |
|
RU2594240C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2015 |
|
RU2576067C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2528643C1 |
Композиция для изготовления жаростойких композитов | 2016 |
|
RU2623387C1 |
Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат - повышение предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно содержит шлак от выплавки безуглеродистого феррохрома с содержанием, мас.%: SiO2 - 5,8; Al2O3 - 54,8; Fe2O3 - 1,88; СаО - 13,2; MgO - 14,8; Cr2O3 - 5,4; R2O - 2,3, при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15, щебень 33-40, песок 10-13, ортофосфорная кислота H3PO4 10-15, шлак от выплавки безуглеродистого феррохрома 24-30. 4 табл.
Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит шлак от выплавки безуглеродистого феррохрома с содержанием, мас.%: SiO2 - 5,8; Al2O3 - 54,8; Fe2O3 - 1,88; СаО - 13,2; MgO - 14,8; Cr2O3 - 5,4; R2O - 2,3 при следующем соотношении компонентов, мас.%:
ХЛЫСТОВ А.И | |||
Повышение эффективности жаростойких композитов за счёт применения химических связующих», Строительные материалы, оборудование,технологии ХХI века, 2012, | |||
0 |
|
SU404813A1 | |
Огнеупорная масса | 1987 |
|
SU1578107A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Огнеупорная масса для футеровки индукционных тигельных печей | 1985 |
|
SU1301811A1 |
Жаростойкий торкрет-бетон | 1980 |
|
SU876593A1 |
Способ изготовления сопротивлений из манганиновой проволоки в стеклянной изоляции | 1960 |
|
SU131812A1 |
БЕТОННАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ | 0 |
|
SU299482A1 |
Бетонная смесь | 1975 |
|
SU555064A1 |
US 6783799 В1, 31.08.2004 | |||
Устройство для изготовления пленки | 1983 |
|
SU1147442A1 |
Авторы
Даты
2014-07-10—Публикация
2013-01-09—Подача