Изобретение относится к технологии получения поликристаллических оптических материалов и может быть использовано при получении оптической керамики на основе оксидов, а также при получении материалов на основе алюмомагниевой шпинели.
Оптическая керамика из алюмомагниевой шпинели относится к конструкционным оптическим материалам с уникальным сочетанием оптических и термомеханических характеристик с широким диапазоном прозрачности и сдвигом длинноволновой границы пропускания в сторону больших длин волн до 6,0 мкм.
Известен быстрый и экономичный процесс получения прозрачной шпинельной керамики. Синтез керамики проводится из смеси оксидов магния и алюминия в присутствии неорганической добавки, улучшающей спекание (LiF; 0,5-2,0 вес.%). Смесь нагревается со скоростью 70-200 град/мин, до температуры 1600±20°C. При этой температуре выдерживают в течение 10-70 минут, а затем прикладывается давление со скоростью 5-10 МПа/мин до величины 50-100 МПа и выдерживается в течение 45-120 минут, после чего снимают давление и охлаждают («Способ получения прозрачной шпинели», US Patent Application №2009/297851, 03.12.2009; B32B 5/16; C01F 7/16; B32B 5/16; C01F 7/00).
По данному способу получают материал с большим рассеянием и поглощением в спектральной области его прозрачности.
Наиболее близким к предлагаемому техническому решению является способ изготовления искусственной алюмомагниевой шпинели, включающий термообработку соединений магния и алюминия в кислородной атмосфере при температуре 600-800°C и последующее горячее прессование полученного порошка при температуре 1250-1300°C в вакууме (см. патент РФ №2035434, опубликованный 20.05.1995 по индексу МПК С04В 35/443).
Указанный способ не позволяет регулировать размер зерна в керамике, а также избавиться от декорирования границ зерен в керамике примесями, обуславливающих рассеяние и поглощение излучения материалом, особенно в видимой области спектра.
Известные способы не позволяют получить оптическую керамику из порошка алюмомагниевой шпинели с высоким светопропусканием. Недостатками вышеописанной технологии материала из алюмомагниевой шпинели являются: неконтролируемое изменение содержания оксида магния (обусловленное высоким парциальным давлением оксида магния при температуре горячего прессования), отсутствие очистки материала в течение технологического процесса, а также невозможностью влиять на поверхностную энергию зерен.
Задачей предлагаемого технического решения является получение поликристаллического оптического материала из алюмомагниевой шпинели, прозрачного в области 25000-2000 см-1, особенно в ИК области спектра.
Технический результат достигается за счет использования более чистого, по отношению к исходному порошку, материала с измененной поверхностной, энергией зерен, сформированного изначально брикета из алюмомагниевой шпинели, легированной фтористым литием 1 вес.%, и его уплотнения при температурах 1550-1600°C при определенных режимах приложения усилия (давления) и изотермической выдержки под давлением, обеспечивающих протекание процессов зернограничного и внутрезеренного скольжения, причем последний при локальных напряжениях выше величины предельного скалывающего напряжения. Введение в исходный порошок алюмомагниевой шпинели стехиометрического состава 1 вес.% фтористого лития (LiF) обеспечивает снижение технологического параметра - температуры уплотнения материала, а также частичной очистки алюмомагниевой шпинели от примеси за счет ее возгонки при нагреве выше температуры плавления легирующей добавки.
Задача изобретения решается с помощью нового способа получения поликристаллического оптического материала на основе оксидов, включающего процесс деформирования исходного материала из алюмомагниевой шпинели при повышении давления, в котором, в отличие от прототипа, из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, изготавливают брикет путем спекания в вакууме при температуре 1100-1500°C, с диаметром, равным диаметру формы, в которую помещают спеченный брикет, который затем уплотняют в форме при температуре 1550-1600°C в течение 5-30 минут с приложением давления до величины 350-500 кг/см2, выдерживают 30-55 минут, после чего охлаждают.
Предложенная технология поликристаллического оптического материала подобрана опытным путем и обеспечивает создание оптического материала, который после механической обработки (шлифования и полирования) имеет широкий спектр пропускания в видимой и ИК областях спектра, причем в диапазоне 3,0-5,0 мкм коэффициент пропускания более 86%.
Конкретный пример выполнения.
Исходный состав представляет собой порошок алюмомагниевой шпинели с соотношением Al2O3/MgO, равным 1, который предварительно формуют в брикет ⌀38 мм методом холодного прессования. Затем брикет спекают в вакууме при температуре 1300°C. Полученный спеченный брикет загружают в форму, которую помещают в установку для осуществления его уплотнения, после чего нагревают до температуры 1550°C и прикладывают усилие, необходимое для создания давления 350 кг/см2 в течение 5 минут, выдерживают образец при давлении 35 минут, после чего снимают усилие и охлаждают. После шлифования и полирования поверхности образца (толщина 2,0 мм) получен коэффициент пропускания в ИК области спектра, приведенный в таблице.
название | год | авторы | номер документа |
---|---|---|---|
Поликристаллический синтетический ювелирный материал (варианты) и способ его получения | 2015 |
|
RU2613520C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ АЛЮМОМАГНИЕВОЙ ШПИНЕЛИ | 2014 |
|
RU2589137C2 |
ШИХТА ДЛЯ ОПТИЧЕСКОЙ КЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAlO, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAlO | 2013 |
|
RU2525096C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОЙ ШПИНЕЛИ | 1994 |
|
RU2036185C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОГО СЕЛЛАИТА | 1997 |
|
RU2086715C1 |
ПРОЗРАЧНАЯ СТЕКЛОКЕРАМИКА ДЛЯ СВЕТОФИЛЬТРА | 2012 |
|
RU2501746C2 |
Способ получения оптического поликристаллического селенида цинка | 2016 |
|
RU2619321C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦИРУЮЩЕЙ НАНОРАЗМЕРНОЙ ОПТИЧЕСКИ ПРОЗРАЧНОЙ КЕРАМИКИ MgAlO | 2021 |
|
RU2775450C1 |
Оптически прозрачный люминесцентный наноструктурный керамический материал | 2021 |
|
RU2763148C1 |
ЛАЗЕРНАЯ ФТОРИДНАЯ НАНОКЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2011 |
|
RU2484187C1 |
Изобретение относится к технологии получения поликристаллических оптических материалов и может быть использовано при получении оптической керамики на основе оксидов, а также материалов на основе алюмомагниевой шпинели. Исходное сырье в виде брикета из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, спекают в вакууме при температурах 1100-1500°C. Загружают в форму полученный брикет с диаметром, равным диаметру формы, и производят его уплотнение при температуре 1550-1600°C в течение 5-30 минут при давлении 350-500 кг/см2, выдерживают 30-55 минут и охлаждают. Техническим результатом изобретения является получение поликристаллического оптического материала из алюмомагниевой шпинели, прозрачного в области 25000-2000 см-1, особенно в ИК области спектра. 1 пр., 1 табл.
Способ получения поликристаллического оптического материала на основе оксидов путем деформирования исходного материала из алюмомагниевой шпинели при повышении давления, отличающийся тем, что в качестве исходного сырья в форму загружают брикет, спеченный в вакууме из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, при температурах 1100-1500°C, с диаметром, равным диаметру формы, брикет уплотняют при температуре 1550-1600°C в течение 5-30 минут, при давлении до величины 350-500 кг/см2, выдерживают 30-55 минут и охлаждают.
СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОЙ АЛЮМОМАГНИЕВОЙ ШПИНЕЛИ | 1994 |
|
RU2035434C1 |
Способ получения оптической керамики | 1990 |
|
SU1715774A1 |
US 5001093 A, 19.03.1991 | |||
JP 2009280455 A, 13.12.2009 | |||
US 7611661 B1, 03.11.2009 |
Авторы
Даты
2014-07-20—Публикация
2013-02-21—Подача