СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО ОПТИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ОКСИДОВ Российский патент 2014 года по МПК C04B35/443 G02B1/02 

Описание патента на изобретение RU2522489C1

Изобретение относится к технологии получения поликристаллических оптических материалов и может быть использовано при получении оптической керамики на основе оксидов, а также при получении материалов на основе алюмомагниевой шпинели.

Оптическая керамика из алюмомагниевой шпинели относится к конструкционным оптическим материалам с уникальным сочетанием оптических и термомеханических характеристик с широким диапазоном прозрачности и сдвигом длинноволновой границы пропускания в сторону больших длин волн до 6,0 мкм.

Известен быстрый и экономичный процесс получения прозрачной шпинельной керамики. Синтез керамики проводится из смеси оксидов магния и алюминия в присутствии неорганической добавки, улучшающей спекание (LiF; 0,5-2,0 вес.%). Смесь нагревается со скоростью 70-200 град/мин, до температуры 1600±20°C. При этой температуре выдерживают в течение 10-70 минут, а затем прикладывается давление со скоростью 5-10 МПа/мин до величины 50-100 МПа и выдерживается в течение 45-120 минут, после чего снимают давление и охлаждают («Способ получения прозрачной шпинели», US Patent Application №2009/297851, 03.12.2009; B32B 5/16; C01F 7/16; B32B 5/16; C01F 7/00).

По данному способу получают материал с большим рассеянием и поглощением в спектральной области его прозрачности.

Наиболее близким к предлагаемому техническому решению является способ изготовления искусственной алюмомагниевой шпинели, включающий термообработку соединений магния и алюминия в кислородной атмосфере при температуре 600-800°C и последующее горячее прессование полученного порошка при температуре 1250-1300°C в вакууме (см. патент РФ №2035434, опубликованный 20.05.1995 по индексу МПК С04В 35/443).

Указанный способ не позволяет регулировать размер зерна в керамике, а также избавиться от декорирования границ зерен в керамике примесями, обуславливающих рассеяние и поглощение излучения материалом, особенно в видимой области спектра.

Известные способы не позволяют получить оптическую керамику из порошка алюмомагниевой шпинели с высоким светопропусканием. Недостатками вышеописанной технологии материала из алюмомагниевой шпинели являются: неконтролируемое изменение содержания оксида магния (обусловленное высоким парциальным давлением оксида магния при температуре горячего прессования), отсутствие очистки материала в течение технологического процесса, а также невозможностью влиять на поверхностную энергию зерен.

Задачей предлагаемого технического решения является получение поликристаллического оптического материала из алюмомагниевой шпинели, прозрачного в области 25000-2000 см-1, особенно в ИК области спектра.

Технический результат достигается за счет использования более чистого, по отношению к исходному порошку, материала с измененной поверхностной, энергией зерен, сформированного изначально брикета из алюмомагниевой шпинели, легированной фтористым литием 1 вес.%, и его уплотнения при температурах 1550-1600°C при определенных режимах приложения усилия (давления) и изотермической выдержки под давлением, обеспечивающих протекание процессов зернограничного и внутрезеренного скольжения, причем последний при локальных напряжениях выше величины предельного скалывающего напряжения. Введение в исходный порошок алюмомагниевой шпинели стехиометрического состава 1 вес.% фтористого лития (LiF) обеспечивает снижение технологического параметра - температуры уплотнения материала, а также частичной очистки алюмомагниевой шпинели от примеси за счет ее возгонки при нагреве выше температуры плавления легирующей добавки.

Задача изобретения решается с помощью нового способа получения поликристаллического оптического материала на основе оксидов, включающего процесс деформирования исходного материала из алюмомагниевой шпинели при повышении давления, в котором, в отличие от прототипа, из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, изготавливают брикет путем спекания в вакууме при температуре 1100-1500°C, с диаметром, равным диаметру формы, в которую помещают спеченный брикет, который затем уплотняют в форме при температуре 1550-1600°C в течение 5-30 минут с приложением давления до величины 350-500 кг/см2, выдерживают 30-55 минут, после чего охлаждают.

Предложенная технология поликристаллического оптического материала подобрана опытным путем и обеспечивает создание оптического материала, который после механической обработки (шлифования и полирования) имеет широкий спектр пропускания в видимой и ИК областях спектра, причем в диапазоне 3,0-5,0 мкм коэффициент пропускания более 86%.

Конкретный пример выполнения.

Исходный состав представляет собой порошок алюмомагниевой шпинели с соотношением Al2O3/MgO, равным 1, который предварительно формуют в брикет ⌀38 мм методом холодного прессования. Затем брикет спекают в вакууме при температуре 1300°C. Полученный спеченный брикет загружают в форму, которую помещают в установку для осуществления его уплотнения, после чего нагревают до температуры 1550°C и прикладывают усилие, необходимое для создания давления 350 кг/см2 в течение 5 минут, выдерживают образец при давлении 35 минут, после чего снимают усилие и охлаждают. После шлифования и полирования поверхности образца (толщина 2,0 мм) получен коэффициент пропускания в ИК области спектра, приведенный в таблице.

Таблица λ, мкм 2,5 3,0 3,5 4,0 4,5 5,0 5,5 κ, % 84,0 84,5 86,0 87,0 86,0 81 67

Похожие патенты RU2522489C1

название год авторы номер документа
Поликристаллический синтетический ювелирный материал (варианты) и способ его получения 2015
  • Михайлов Михаил Дмитриевич
  • Гольева Елена Владимировна
  • Мамонова Дарья Владимировна
RU2613520C1
СПОСОБ ПОЛУЧЕНИЯ ПРОЗРАЧНОЙ АЛЮМОМАГНИЕВОЙ ШПИНЕЛИ 2014
  • Гарибин Евгений Андреевич
  • Гусев Павел Евгеньевич
  • Демиденко Алексей Александрович
  • Крутов Михаил Анатольевич
  • Балабанов Станислав Сергеевич
  • Гаврищук Евгений Михайлович
  • Дроботенко Виктор Васильевич
  • Пермин Дмитрий Алексеевич
  • Степанов Дмитрий Александрович
RU2589137C2
ШИХТА ДЛЯ ОПТИЧЕСКОЙ КЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAlO, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAlO 2013
  • Смирнов Андрей Николаевич
  • Шарыпин Вячеслав Владимирович
  • Евстропьев Сергей Константинович
  • Левит Леонид Григорьевич
  • Павлова Валентина Николаевна
RU2525096C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОЙ ШПИНЕЛИ 1994
  • Удалова Людмила Владимировна
  • Мальцев Михаил Васильевич
  • Петрик Виктор Иванович
RU2036185C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОГО СЕЛЛАИТА 1997
  • Петрик Виктор Иванович[Ru]
  • Ляшенко Владимир Петрович[Ru]
RU2086715C1
ПРОЗРАЧНАЯ СТЕКЛОКЕРАМИКА ДЛЯ СВЕТОФИЛЬТРА 2012
  • Дымшиц Ольга Сергеевна
  • Жилин Александр Александрович
  • Запалова Светлана Сергеевна
RU2501746C2
Способ получения оптического поликристаллического селенида цинка 2016
  • Дунаев Анатолий Алексеевич
  • Егорова Ирина Львовна
  • Маринин Святослав Федорович
  • Тихонов Альберт Андреевич
RU2619321C1
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦИРУЮЩЕЙ НАНОРАЗМЕРНОЙ ОПТИЧЕСКИ ПРОЗРАЧНОЙ КЕРАМИКИ MgAlO 2021
  • Киряков Арсений Николаевич
  • Зацепин Анатолий Федорович
  • Дьячкова Татьяна Витальевна
  • Тютюнник Александр Петрович
  • Заинулин Юлий Галиулович
RU2775450C1
Оптически прозрачный люминесцентный наноструктурный керамический материал 2021
  • Киряков Арсений Николаевич
  • Зацепин Анатолий Федорович
  • Дьячкова Татьяна Витальевна
  • Тютюнник Александр Петрович
RU2763148C1
ЛАЗЕРНАЯ ФТОРИДНАЯ НАНОКЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2011
  • Гарибин Евгений Андреевич
  • Гусев Павел Евгеньевич
  • Демиденко Алексей Александрович
  • Крутов Михаил Анатольевич
  • Миронов Игорь Алексеевич
  • Осико Вячеслав Васильевич
  • Смирнов Андрей Николаевич
  • Федоров Павел Павлович
  • Чернова Елена Владимировна
  • Йоахим Хайн
  • Дитер Нитцольд
  • Ханс-Йоахим Поль
  • Ульрих Шрамм
  • Матиас Зибольд
RU2484187C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО ОПТИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ОКСИДОВ

Изобретение относится к технологии получения поликристаллических оптических материалов и может быть использовано при получении оптической керамики на основе оксидов, а также материалов на основе алюмомагниевой шпинели. Исходное сырье в виде брикета из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, спекают в вакууме при температурах 1100-1500°C. Загружают в форму полученный брикет с диаметром, равным диаметру формы, и производят его уплотнение при температуре 1550-1600°C в течение 5-30 минут при давлении 350-500 кг/см2, выдерживают 30-55 минут и охлаждают. Техническим результатом изобретения является получение поликристаллического оптического материала из алюмомагниевой шпинели, прозрачного в области 25000-2000 см-1, особенно в ИК области спектра. 1 пр., 1 табл.

Формула изобретения RU 2 522 489 C1

Способ получения поликристаллического оптического материала на основе оксидов путем деформирования исходного материала из алюмомагниевой шпинели при повышении давления, отличающийся тем, что в качестве исходного сырья в форму загружают брикет, спеченный в вакууме из порошка алюмомагниевой шпинели стехиометрического состава, легированного 1 вес.% фтористого лития, при температурах 1100-1500°C, с диаметром, равным диаметру формы, брикет уплотняют при температуре 1550-1600°C в течение 5-30 минут, при давлении до величины 350-500 кг/см2, выдерживают 30-55 минут и охлаждают.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522489C1

СПОСОБ ИЗГОТОВЛЕНИЯ ИСКУССТВЕННОЙ АЛЮМОМАГНИЕВОЙ ШПИНЕЛИ 1994
  • Удалова Л.В.
  • Мальцев М.В.
  • Петрик В.И.
RU2035434C1
Способ получения оптической керамики 1990
  • Базилеская Татьяна Анатольевна
  • Белых Галина Ивановна
  • Грицына Василий Тимофеевич
  • Бессонова Наталья Анатольевна
  • Карпенко Маргарита Геннадиевна
  • Мальцев Михаил Васильевич
  • Удалова Людмила Владимировна
SU1715774A1
US 5001093 A, 19.03.1991
JP 2009280455 A, 13.12.2009
US 7611661 B1, 03.11.2009

RU 2 522 489 C1

Авторы

Ветров Василий Николаевич

Игнатенков Борис Александрович

Евстропьев Сергей Константинович

Даты

2014-07-20Публикация

2013-02-21Подача