СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОЭЛЕКТРИЧЕСКИХ КОНДЕНСАТОРОВ Российский патент 2014 года по МПК H01G4/12 

Описание патента на изобретение RU2523000C1

Изобретение относится к технологии изготовления конденсаторов с диэлектриком из керамики на основе титаната бария, покрытой металлом посредством распыления при его вакуумном испарении.

Уровень данной области техники характеризует описанный в Рене В.Т. «Электрические конденсаторы», изд.3, Энергия, 1969, с.73-75. Способ изготовления электрического конденсатора, включающего пластину из сегнетокерамического материала с электродами в виде двухстороннего покрытия электропроводным материалом.

В качестве электропроводного материала используют серебро, которое наносят на подложку в виде пасты.

Адгезию функционального покрытия с подложкой обеспечивают термообработкой, при которой серебро диффундирует в поверхностный слой.

Основным недостатком этого способа является уменьшение емкости конденсатора из-за частичного восстановления керамики в зонах диффузии и последующая деградация емкости и уменьшение пробивного напряжения.

Более совершенным техническим решением, которое по числу совпадающих признаков и технической сущности выбрано в качестве наиболее близкого аналога предложенному, является способ изготовления сегнетоке-рамических конденсаторов, содержащих керамический диэлектрик на основе титаната бария, на металлизированных поверхностях которого закреплены электродные токосъемники, описанный в патенте RU 2354632, С04В 41/90, С04В 41/91, 2007 г.

Известный способ включает операцию формования керамической пластины (подложки), на поверхности которой наносят смесь в равных долях высокодисперсного (1-50 мкм) медного порошка с материалом подложки, а затем горячим прессованием формируют пластину с поверхностным композитным слоем, который служит в качестве адгезионного для крепления медных электродов.

Далее преимущественно треть поверхностной композитной прослойки сошлифовывают, обнажая частицы меди для последующего вакуумного напыления при давлении 10-4 Па меди в качестве электродного слоя.

После этого в вакууме приготовленную сегнетокерамическую пластину, на поверхностях которой нанесен слой меди, нагревают, проводя фотонный отжиг для сплавления в монолит электродного слоя с медным включением адгезионной прослойки.

По достижении плавления металла в верхнем электродном слое покрытия керамической подложки в вакуумной камере, в среде аргона, изменяют в течение 15 минут давление до атмосферного, обеспечивая охлаждение изделия до температуры 25-30°С без доступа кислорода.

Способ обеспечивает повышение на 35-40% прочность сцепления металла с поверхностью керамической подложки.

Однако известный способ не позволяет заметно увеличить емкость сегнетокерамического конденсатора.

Кроме того, широкий (до 50 мкм) верхний слой подложки насыщен частицами меди, создающими мостики проводимости и внутренней ионизации, что приводит к резкому снижению напряжения.

Технической задачей, на решение которой направлено настоящее изобретение, является усовершенствование известного способа для высокопроизводительного изготовления сегнетокерамических конденсаторов с повышенными показателями удельной емкости и пробивного напряжения.

Требуемый технический результат достигается тем, что в известном способе изготовления сегнетоэлектрических конденсаторов, включающем формование керамической подложки, преимущественно на основе титаната бария, нанесение легирующего покрытия, вакуумное напыление медных электродов и вакуумный отжиг композитного материала, согласно изобретению легирующее покрытие наносят в жидкой фазе путем конденсации из парового потока испаренных в вакууме металлов ряда: титан, ванадий, хром, марганец, ниобий, при температуре подложки 150-350°С, после чего подложку с легирующим покрытием подвергают вакуумному отжигу, а последующее нанесение медных электродов проводят непосредственно на нагретую до температуры не выше 600°С композитную подложку.

Отличительные признаки обеспечили, сравнительно с существующими аналогами, повышение в среднем в 6 раз удельной емкости сегнетокерамического конденсатора и в 3,5 раз пробивного напряжения.

Нанесение легирующего металла на подложку в жидкой фазе из парового потока и последующий вакуумный отжиг композитного материала обеспечивают эффективный массоперенос (термодиффузию) легирующего металла (допанта) в подложку, при совмещении поверхностной и объемной диффузии легирующего металла в керамическую подложку.

Допант при этом, вследствие активации и перемешивания в жидкой ванне расплава, вступает во взаимодействие с сегнетокерамикой, образуя твердые растворы и химические соединения.

Легирующие элементы, диффундируя в зерна титаната бария (объемная диффузия), повышают поляризацию доменов подложки, увеличивая диэлектрическую проницаемость, и заполняют вакансии по границам зерен титаната бария (поверхностная диффузия), формируя межзерновые изолирующие слои, чем повышается пробивное напряжение сегнетокерамического конденсаторного материала.

Растворимость металлов-допантов и термодиффузия в подложку их атомов в жидком состоянии намного выше, чем в твердом состоянии, поэтому заметно увеличивается диэлектрическая проницаемость легированной сегнетокерамики.

Так, при толщине керамической пластины подложки 300 мм диффузионная зона составляет 120-150 мкм, что при двухстороннем легировании обеспечивает сквозное легирование объема подложки и достижение максимальных показателей назначения.

При нанесении слоя допанта температура массива подложки поддерживается в диапазоне 150-350°С, в то время как температура на поверхности подложки достигает температуры плавления допанта за счет теплоты конденсации легирующего материала из парового потока, что обеспечивает состояние допанта на поверхности подложки в жидкой фазе при легировании.

Легирование допантом керамической пластины, нагретой до температуры 150-350°С, обеспечивает активное взаимодействие легирующего металла в жидкой ванне с титанатом бария, увеличивая глубину проникновения легирующих элементов в пластину, то есть совмещение поверхностной и объемной диффузии допанта.

Если температура нагрева керамической подложки при легировании будет ниже 150°С, не обеспечивается прочная адгезионная связь слоя легирующего металла к сегнетокерамическому материалу.

Если температура нагрева керамической подложки при легировании будет выше 350°С, резко увеличиваются диэлектрические потери в формируемом конденсаторе.

Для того чтобы диффузия легирующего металла-допанта завершилась полным насыщением, проводят вакуумный отжиг, при котором допант проникает в глубь сегнетокерамики. При этом за счет поверхностной диффузии допанта по границам зерен образуются барьерные слои, увеличивающие пробивное напряжение, кроме того, допант заполняет поры, вызывающие ионизационный пробой. Процесс диффузии продолжается до тех пор, пока химические потенциалы компонентов всей приготовленной структуры не сравняются.

Отжиг в вакууме совмещают с нанесением легирующего металла для поддержания необходимой температуры диффузии, исключая окисление допанта.

Использование в качестве допанта металлов ряда: титан, ванадий, хром, марганец, ниобий объясняется тем, что они обладают радиусом ионов менее 0,066 мкм, близким по размерам к ионам кристаллической решетки титаната бария, и энергией ионизации более 6,7 эВ, что позволяет диффундировать легирующим элементам в кристаллическую решетку материала подложки, обеспечив тем самым повышение емкости конденсаторного материала при смещении положения в решетке иона титана.

В решетке титаната бария особую роль играет ион титана, занимая центральное, но несколько смещенное положение, и поляризация диэлектрика обусловлена смещением иона титана при приложении внешнего электрического поля. Внедрение в решетку ионов, близких по радиусу ионам решетки титаната бария, приводит к повышению емкости сегнетокерамического конденсатора.

При легировании керамической подложки металлами с радиусом иона больше 0,066 нм и энергией ионизации менее 6,7 эВ эффекта повышения емкости не происходит из-за большего размера иона, который не может проникнуть в решетку титаната бария, или по причине недостатка энергии для проникновения в решетку.

Более высокая энергия ионизации обеспечивает активизацию допанта при перемешивании в жидкой ванне расплава титаната бария на поверхности керамической подложки, увеличивая поляризацию доменов композитной основы и глубину диффузии, что кратно повышает показатели назначения сегнетоэлектрика, в частности пробивное напряжение.

Для иллюстрации сказанного приведены радиусы некоторых металлов: Ti4+-0,64Å, Cr6+-0,35Å, Mn2+-0,52Å, V5+-0,59Å, Nb5+-0,66Å; Ni2+-0,79Å, Fe2+-0,80Å, Со2+-0,80Å, Cu2+-0,80Å, Zr4+-0,82Å, Y3+-0,97Å, соответственно пригодные и непригодные для легирования по предложенному способу изготовления сегнетоэлектрических конденционеров.

Особенностью предложенного способа является то, что образующийся на поверхности керамической пластины легирующий слой допанта служит в качестве адгезионной прослойки, на которой непосредственно формируют электродный слой меди, наносимой вакуумным напылением, без разрыва технологического потока в вакуумной камере.

При этом температура легированной подложки не превышает 600°С, чтобы исключить взаимодействие меди с материалом адгезионной прослойки, монолитно связанной с керамической основой, предотвратив тем самым ухудшение служебных характеристик конденсатора.

Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, неприсущей признакам в разобщенности, то есть поставленная техническая задача в изобретении решена не суммой эффектов, а новым сверхэффектом суммы признаков.

Сущность предложенного способа иллюстрируется примерами его выполнения.

Пример №1

На диски диаметром 6 мм и толщиной 300 мкм из формованной и спеченной конденсаторной сегнетокерамики на основе титаната бария группы по температурной стабильности Y5V (по российской классификации группы Н30), вакуумным напылением наносят слой легирующей добавки толщиной 8 мкм.

При этом на образец Н30-1 наносят легирующую добавку - титан (радиус иона 0,064 нм и энергия ионизации 6,82 эВ) при температуре подложки 200…250°С, на образец Н30-2 наносят легирующую добавку - ванадий (радиус иона 0,059 нм и энергия ионизации 6,71 эВ) при температуре подложки 190…230°С, а на образец Н30-3 наносят легирующую добавку - хром (радиус иона 0,35 нм и энергия ионизации 6,764 эВ) при температуре подложки 150…220°С.

Аналогично наносят слой легирующей добавки на вторую сторону керамических дисков.

Затем слой допанта на поверхности образцов Н30-1, Н30-2 и Н30-3 прогревают в вакууме от термоблока - отжигают, получая легированный в объеме материал на основе титаната бария.

Далее на поверхность образцов композитного материала, легированного допантом, посредством вакуумного напыления наносят двухстороннее медное покрытие при температуре подложки не более 600°С.

В результате получают керамический конденсатор группы Н30 в виде пластины из легированной сегнетокерамики с медными электродами.

Образец сравнения Н30-4 - керамический конденсатор из формованной и спеченной конденсаторной сегнетокерамики на основе титаната бария группы по температурной стабильности Y5V (по российской классификации группы Н30), без легирующей добавки и с электродами из серебра, нанесенными методом термодиффузии по прототипу.

Результаты тестирования образцов приведены в таблице.

Пример №2

На диски диаметром 6 мм и толщиной 300 мкм из формованной и спеченной конденсаторной сегнетокерамики на основе титаната бария группы по температурной стабильности Y5V (по российской классификации группы Н70) вакуумным напылением наносят слой легирующей добавки толщиной 10 мкм.

При этом на образец Н70-1 наносят легирующую добавку - титан (радиус иона 0,064 нм и энергия ионизации 6,82 эВ) при температуре подложки 250…300°С, на образец Н70-2 наносят легирующую добавку - ванадий (радиус иона 0,059 нм и энергия ионизации 6,71 эВ) при температуре подложки 200…250°С, а на образец Н70-3 наносят легирующую добавку - хром (радиус иона 0,3 5 нм и энергия ионизации 6,76 эВ) при температуре подложки 170…250°С.

Аналогично наносят слой легирующей добавки на вторую сторону керамических дисков.

Затем слой допанта на поверхности образцов Н70-1, Н70-2 и Н70-3 прогревают в вакууме от термоблока - отжигают, получая легированный в объеме материал на основе титаната бария.

Далее на поверхность образцов композитного материала, легированного допантом, посредством вакуумного напыления наносят двухстороннее медное покрытие при температуре подложки не более 600°С.

В результате получают керамический конденсатор группы Н70 в виде пластины из легированной сегнетокерамики с медными электродами.

Образец сравнения Н70-4 - керамический конденсатор из формованной и спеченной конденсаторной сегнетокерамики на основе титаната бария группы по температурной стабильности Y5V (по российской классификации группы Н70) без легирующей добавки и с электродами из серебра, нанесенными методом термодиффузии по прототипу.

Результаты тестирования образцов приведены в таблице.

Показатель образец Н30-1 Н30-2 Н30-3 H30-4 Н70-1 Н70-2 Н70-3 Н70-4 материал электродов Cu Ag Cu Ag легирующий элемент Cr V Ti нет Cr V Ti Нет толщина керамики, мкм 300 300 300 300 300 300 300 300 емкость, πФ 3500 4000 4500 680 9900 11000 15000 2200 тангенс угла потерь, tg·10-4 240 220 220 <250 350 340 330 <350 пробивное напряжение, В 2700 2400 2400 750 3000 2700 3000 750 сопротивление изоляции, мОм >5·103 >5·103 >5·103 >3·103 >5·103 >5·103 >5·103 >3·103 диэлектрическая проницаемость 5932 6780 7627 1160 18780 18644 25423 3729

Из таблицы видно, что в результате легирования сегнетокерамики группы Н30 предложенным способом, сравнительно с прототипом, диэлектрическая проницаемость (значит, и емкость) выросла в зависимости от легирующей добавки в 5,0-6,6 раз с одновременным увеличением пробивного напряжения в 3,2-3,6 раза.

Для группы Н70 рост емкости составил от 5 до 6,8 раза с одновременным увеличением пробивного напряжения в 3,6-4,0 раза.

При этом диэлектрические потери не увеличились.

Проведенный сопоставительный анализ предложенного технического решения с выявленными аналогами уровня техники, из которого изобретение явно не следует для специалиста по электротехнике, показал, что оно неизвестно, а с учетом практической возможности серийного изготовления сегнетоэлектрических конденсаторов на действующем оборудовании можно сделать вывод о соответствии критериям патентоспособности.

Похожие патенты RU2523000C1

название год авторы номер документа
ОСАЖДЕНИЕ НА БОЛЬШОЙ ПЛОЩАДИ И ЛЕГИРОВАНИЕ ГРАФЕНА И СОДЕРЖАЩИЕ ЕГО ПРОДУКТЫ 2010
  • Веерасами Виджайен С.
RU2567949C2
Сегнетокерамическая свеча зажигания для двигателей летательных аппаратов 2023
  • Яшнов Леонид Юрьевич
RU2824034C2
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННЫХ СЛОЕВ ИОННОЙ ИМПЛАНТАЦИЕЙ 2008
  • Калашников Евгений Валентинович
RU2395619C1
СЕГНЕТОКЕРАМИЧЕСКИЙ МАТЕРИАЛ ДЛЯ КОНДЕНСАТОРОВ С ЭЛЕКТРОДАМИ ИЗ НЕБЛАГОРОДНЫХ МЕТАЛЛОВ 1992
  • Пахомова Н.И.
  • Ротенберг Б.А.
RU2047233C1
СЕГНЕТОКЕРАМИЧЕСКИЙ КОНДЕНСАТОРНЫЙ МАТЕРИАЛ 1992
  • Ротенберг Б.А.
  • Дорохова М.П.
  • Рябинина С.П.
  • Сидоров В.Ф.
  • Лаврентьева Т.М.
RU2035435C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ЭЛЕМЕНТА НА ОСНОВЕ ГЕРМАНИЯ 2008
  • Андреев Вячеслав Михайлович
  • Хвостиков Владимир Петрович
  • Хвостикова Ольга Анатольевна
RU2377698C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОКЕРАМИЧЕСКОГО МАТЕРИАЛА ДЛЯ КОНДЕНСАТОРОВ 1991
  • Костомаров С.В.
  • Ротенберг Б.А.
  • Пахомова Н.И.
  • Егоров Л.И.
RU2012085C1
СПОСОБ ЛЕГИРОВАНИЯ МАТЕРИАЛА И ЛЕГИРОВАННЫЙ МАТЕРИАЛ 2005
  • Раяла Маркку
  • Соининен Пекка
  • Ниинистё Лаури
  • Путконен Матти
  • Пименофф Джо
  • Пяйвясаари Яни
RU2370464C2
СПОСОБ НАНЕСЕНИЯ НА СТЕКЛЯННЫЕ ИЗДЕЛИЯ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ ИЗ МЕДИ И МЕДНЫХ СПЛАВОВ 2021
  • Старцев Дмитрий Юрьевич
RU2777094C1
Гибридный фотопреобразователь, модифицированный максенами 2018
  • Позняк Анна Ивановна
  • Саранин Данила Сергеевич
  • Муратов Дмитрий Сергеевич
  • Гостищев Павел Андреевич
  • Диденко Сергей Иванович
  • Кузнецов Денис Валерьевич
  • Ди Карло Альдо
RU2694086C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОЭЛЕКТРИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к технологии изготовления конденсаторов с диэлектриком из керамики на основе титаната бария. Способ изготовления сегнетоэлектрических конденсаторов включает формование керамической подложки, преимущественно на основе титаната бария, нанесение легирующего покрытия, вакуумное напыление медных электродов и вакуумный отжиг композитного материала, при этом легирующее покрытие наносят в жидкой фазе путем конденсации из парового потока испаренных в вакууме металлов, выбранных из ряда: титан, ванадий, хром, марганец, ниобий, при температуре подложки 150-350°С, после чего подложку с легирующим покрытием подвергают вакуумному отжигу, а последующее нанесение медных электродов проводят непосредственно на нагретую до температуры не выше 600°С композитную подложку. Предложенное техническое решение обеспечивает повышение удельной емкости сегнетокерамического конденсатора, а также устойчивость к пробивному напряжению без диэлектрических потерь.1 табл., 2 пр.

Формула изобретения RU 2 523 000 C1

Способ изготовления сегнетоэлектрических конденсаторов, включающий формование керамической подложки, преимущественно на основе титаната бария, нанесение легирующего покрытия, вакуумное напыление медных электродов и вакуумный отжиг композитного материала, отличающийся тем, что легирующее покрытие наносят в жидкой фазе путем конденсации из парового потока испаренных в вакууме металлов ряда: титан, ванадий, хром, марганец, ниобий, при температуре подложки 150-350°С, после чего подложку с легирующим покрытием подвергают вакуумному отжигу, а последующее нанесение медных электродов проводят непосредственно на нагретую до температуры не выше 600°С композитную подложку.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523000C1

СПОСОБ МЕТАЛЛИЗАЦИИ КЕРАМИКИ 2007
  • Созаев Виктор Адыгеевич
  • Кумыков Вячеслав Каншаубиевич
  • Сергеев Игорь Николаевич
  • Гукетлов Хасан Мухамедович
  • Гедгагова Мадина Вячеславовна
RU2354632C2
JP HO4119620 A, 21.04.1992
СЕГНЕТОКЕРАМИЧЕСКИЙ КОНДЕНСАТОРНЫЙ ДИЭЛЕКТРИК ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ КОНДЕНСАТОРОВ ТЕМПЕРАТУРНО-СТАБИЛЬНОЙ ГРУППЫ 2009
  • Ротенберг Борис Абович
  • Рубинштейн Олег Вениаминович
RU2413325C1
СЕГНЕТОКЕРАМИЧЕСКИЙ МАТЕРИАЛ ДЛЯ КОНДЕНСАТОРОВ С ЭЛЕКТРОДАМИ ИЗ НЕБЛАГОРОДНЫХ МЕТАЛЛОВ 1992
  • Пахомова Н.И.
  • Ротенберг Б.А.
RU2047233C1
JP H02157123 A, 15.06.1990

RU 2 523 000 C1

Авторы

Щербаков Игорь Владимирович

Рязанцев Сергей Николаевич

Даты

2014-07-20Публикация

2013-01-24Подача