СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ КАЧЕСТВА АКУСТИЧЕСКОГО КОНТАКТА ПРИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ Российский патент 2014 года по МПК G01N29/04 

Описание патента на изобретение RU2523781C1

Предлагаемое техническое решение относится к неразрушающему контролю изделий ультразвуковыми методами дефектоскопии и может найти применение для контроля акустического контакта при контроле сварных соединений трубопроводов, изготовленных из магнитных и немагнитных материалов широкого диапазона диаметров.

С целью повышения достоверности контроля, особенно автоматизированного и механизированного, необходимо использование эффективных способов и специальных систем или устройств, обеспечивающих контроль качества акустического контакта в процессе перемещения ультразвукового преобразователя по поверхности контролируемого изделия.

Акустический контакт, представляющий собой звукопроводящее соединение между преобразователем и контролируемым изделием, обуславливает энергию возбуждаемых в изделии ультразвуковых колебаний и амплитуду эхо-сигналов от возможных дефектов. В общем случае, от качества акустического контакта зависит достоверность результатов неразрушающего контроля и, как следствие, безопасность эксплуатации ответственных объектов в промышленности.

Для слежения за качеством акустического контакта в процессе сканирования поверхности объекта контроля используют различные способы, основанные на анализе донных эхо-сигналов, сигналов от конструктивных элементов пьезопреобразователей, низкочастотных колебаний, излучаемых дополнительным устройством, а также величине среднего уровня структурных помех. Известны следующие технические решения:

Измерение амплитуды донного отражения продольной волны, излучаемой дополнительной пьезопластиной в призму наклонного преобразователя и вводимой в металл в том же месте, где вводится основная поперечная волна (см.: патент США №2667780, от 02.02.1954 г.; или авт. свид. №1534388, от 07.01.1990 г.). Недостатком этого способа является то, что уровень донного сигнала зависит не только от качества акустического контакта, но и от многих других факторов: от отражательной способности противоположной (донной) поверхности, от изменения структуры металла, от толщины контактирующей жидкости и т.п. Кроме того, способ может быть использован только при контроле объектов с эквидистантными поверхностями.

Способ контроля качества акустического контакта по принятым колебаниям с определением фазы принятых колебаний и определение качества акустического контакта по ее значению (патент РФ №2141653, от 20.11.1999). Недостатком данного способа является то, что контроль качества акустического контакта возможен только для наклонного электроакустического преобразователя.

Таким образом, указанные выше технические решения обладают низкой достоверностью контроля, имеют ограниченное применение.

Наиболее близким к заявляемому техническому решению и принятым за прототип является способ контроля качества акустического контакта при ультразвуковой дефектоскопии по авт.свид. №1753405 от 07.08.1992 г. «Выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и по его уровню оценка наличия акустического контакта». Однако уровень реверберационных шумов в первую очередь зависит от структуры контролируемого металла и может меняться в зависимости от контролируемой зоны изделия, а значит не может являться универсальным признаком качества акустического контакта. Таким образом, известный способ контроля качества акустического контакта, принятый за прототип, обладает непостоянностью исходного параметра и, как следствие, приводит к низкой достоверности контроля качества акустического контакта.

Технический результат - повышение достоверности контроля качества акустического контакта.

Технический результат достигается за счет того, что предложен новый способ контроля качества акустического контакта при ультразвуковой дефектоскопии изделий, заключающийся в том, что осуществляют выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и по его уровню оценивают наличие акустического контакта. При этом дополнительно осуществляют выделение собственных реверберационных шумов дефектоскопа и по сравнению амплитуд реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа контролируют контакт электроакустического преобразователя с контролируемым материалом.

Также предлагается устройство контроля качества акустического контакта при ультразвуковой дефектоскопии, осуществляющее предлагаемый способ и содержащее электроакустический преобразователь дефектоскопа, сигналы с которого, содержащие собственные реверберационные шумы преобразователя и реверберационные шумы структуры контролируемого материала, поступают на временной селектор, имеющий два выхода, к первому выходу которого последовательно подключены первый усилитель, первый интегратор и первый компаратор, а ко второму выходу временного селектора последовательно подключены второй усилитель, второй интегратор и второй компаратор, с выходов первого и второго компаратора информация поступает на вход логической схемы И, к выходу которой подсоединен индикатор, свидетельствующий о наличии или отсутствии акустического контакта.

Предлагаемое техническое решение поясняется следующими фигурами:

На фиг.1 представлены принятые сигналы при отсутствии (а) и при наличии (б) акустического контакта для неметаллов (оргстекло).

На фиг.2 представлены принятые сигналы при отсутствии (а) и при наличии (б) акустического контакта для металлов (сталь 20).

На фиг.3 показана схема подключения устройства определения акустического контакта к дефектоскопу, реализующее предлагаемый способ.

На фиг.4 показано устройство контроля качества акустического контакта, реализующее предлагаемый способ.

Из фиг.1-2 видно, что при наличии акустического контакта интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) уменьшается, а в зоне шумов контролируемого материала (зона 2 фиг.1 и фиг.2) увеличивается.

Данные обстоятельства могут свидетельствовать об обеспечении акустического контакта между электроакустическим преобразователем и контролируемым материалом. Для определения акустического контакта необходимо:

1. Определить a 1 C интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) в свободном состоянии (электроакустический преобразователь находится в воздухе) по формуле:

a 1 C = 1 T o T A o ( t ) d t

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

Ao(t) - сигнал с электроакустического преобразователя

2. Определить a 2 C - интегральное значение амплитуд в зоне шумов контролируемого материала при свободном состоянии электроакустического преобразователя (зона 2 фиг.1 и фиг.2) по формуле:

a 2 C = 1 T n T T T n A o ( t ) d t

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

Tn - значение времени зоны шумов контролируемого материала, определяемое частотой следования зондирующих импульсов дефектоскопа.

Ao (t) - сигнал с электроакустического преобразователя.

3. Определить a 1 Н - интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) в нагруженном состоянии (электроакустический преобразователь неподвижно находится на объекте контроля, при наличии контактной жидкости) по формуле:

a 1 H = 1 T o T A H ( t ) d t

где T - значение времени зоны собственных шумов электроакустического преобразователя устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости…

AH (t) - сигнал с электроакустического преобразователя в нагруженном состоянии.

4. Определить a 2 H - интегральное значение амплитуд в зоне шумов контролируемого материала (зона 2 фиг.1 и фиг.2) при нагруженном состоянии электроакустического преобразователя по формуле:

a 2 H = 1 T n T T T n A H ( t ) d t

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

Tn - значение времени зоны шумов контролируемого материала, определяемое частотой следования зондирующих импульсов дефектоскопа.

AH (t) - сигнал с электроакустического преобразователя в нагруженном состоянии.

5. Определить a1 - порог интегрального значения амплитуд в зоне собственных шумов (зона 1 фиг.1 и фиг.2) электроакустического преобразователя по формуле:

a 1 = a 1 H + a C 1 2

6. Определить a2 - порог интегрального значения амплитуд в зоне контролируемого материала (зона 2 фиг.1 и фиг.2) по формуле:

a 2 = a 2 H + a C 2 2

Таким образом, определены величины, позволяющие оценить качество акустического контакта.

Для оценки качества акустического контакта при выполнении контроля необходимо:

1. Определить интегральное значение амплитуд в зоне собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2) при проведении контроля по формуле:

a 1 т е к = 1 T o T A т е к ( t ) d t

где T - значение времени зоны собственных шумов электроакустического преобразователя, устанавливаемое в зависимости от типа электроакустического преобразователя, контролируемого материала и контактной жидкости.

Aтек (t) - сигнал с электроакустического преобразователя при проведении контроля.

2. Определить a 2 т е к - интегральное значение амплитуд в зоне шумов контролируемого материала (зона 2 фиг.1 и фиг.2) при проведении контроля по формуле:

a 2 т е к = 1 T n T T T n A т е к ( t ) d t

где T - значение времени зоны собственных шумов электроакустического преобразователя.

Tn - значение времени зоны шумов контролируемого материала, определяемое частотой следования зондирующих импульсов дефектоскопа.

Aтек(t) - сигнал с электроакустического преобразователя при проведении контроля.

3. Сравнить значение a 1 т е к с пороговым значением для зоны собственных шумов электроакустического преобразователя (зона 1 фиг.1 и фиг.2).

| a 1 H a 1 т е к | a 1

4. Сравнить значение a 2 т е к с пороговым значением для зоны контролируемого материала (зона 2 фиг.1 и фиг.2).

| a 2 H a 2 т е к | a 2

5. Определить качество акустического контакта

| a 1 H a 1 т е к | a 1 и | a 2 H a 2 т е к | a 2 - акустический контакт удовлетворительный.

| a 1 H a 1 т е к | > a 1 и | a 2 H a 2 т е к | a 2 - акустический контакт неудовлетворительный.

| a 1 H a 1 т е к | a 1 и | a 2 H a 2 т е к | > a 2 - акустический контакт неудовлетворительный.

| a 1 H a 1 т е к | > a 1 и | a 2 H a 2 т е к | > a 2 - акустический контакт неудовлетворительный.

Таким образом, можно постоянно контролировать контакт электроакустического преобразователя с контролируемым материалом и судить о его качестве.

Данный способ может быть реализован на мультипрограммных дефектоскопах или с помощью специального устройства на обычных дефектоскопах.

Предлагаемый способ можно реализовать с помощью устройство контроля качества акустического контакта.

Устройство контроля качества акустического контакта представлено на фиг.3 и реализовано следующим образом:

Сигналы, принятые электроакустическим преобразователем дефектоскопа, на фиг.3 не показан (собственные и структурные реверберационные шумы), поступают на вход временного селектора 1. На выходы временного селектора поступают собственные реверберационные шумы преобразователя (выход 1) и реверберационные шумы структуры контролируемого материала (выход 2). К выходам временного селектора последовательно подсоединены усилители 2, интеграторы 3 и компараторы 4. Каждый усилитель имеет свой коэффициент усиления, а компаратор установленный порог. С выходов компараторов информация поступает на вход логической схемы И 5. К выходу логической схемы И 5 подсоединен индикатор 6, свидетельствующий о наличии или отсутствии акустического контакта. Таким образом, путем выделения и сравнения реверберационных шумов преобразователя и реверберационных шумов структуры контролируемого материала определяется наличие или отсутствие акустического контакта электроакустического преобразователя дефектоскопа.

Предлагаемое устройство можно подключить к устройству дефектоскопа (см. фиг.4), для этого сигнал от приемника дефектоскопа 10 должен поступать на делитель 8, а оттуда на описанное выше устройство контроля качества акустического контакта 9 и на устройство обработки дефектоскопа 7.

Выше был раскрыт конкретный вариант осуществления предлагаемого технического решения, но любому специалисту в данной области техники очевидно, что на основе раскрытых данных можно создать вариации устройств, например, применяя для сравнения реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа ПК. Таким образом, объем изобретения не должен быть ограничен конкретным вариантом его осуществления, раскрытым в предлагаемой формуле изобретения.

Похожие патенты RU2523781C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ КАЧЕСТВА АКУСТИЧЕСКОГО КОНТАКТА ПРИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ 1998
  • Миронов Ф.С.
  • Марков А.А.
  • Молотков С.Л.
RU2141653C1
Ультразвуковой дефектоскоп для контроля сварных швов 1986
  • Гурвич Анатолий Константинович
  • Пасси Гаррий Соломонович
SU1388786A1
Способ ультразвукового контроля изделий 1987
  • Марков Анатолий Аркадьевич
  • Гурвич Анатолий Константинович
  • Копанский Григорий Александрович
SU1429013A1
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ИЗДЕЛИЯ 2009
  • Алехин Сергей Геннадиевич
  • Бобров Владимир Тимофеевич
  • Дурейко Андрей Владимирович
  • Козлов Владимир Николаевич
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
RU2442106C2
Устройство к ультразвуковому дефектоскопу для контроля качества акустического контакта 1990
  • Якушев Михаил Леонидович
  • Чапаев Шамиль Гениатович
  • Лукманов Рев Карамович
  • Нарицын Владимир Васильевич
SU1753405A1
Устройство выборки акустических сигналов 1990
  • Ольшанский Валерий Петрович
  • Суркова Нина Владимировна
SU1716422A1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ИЗДЕЛИЯ С ПОМОЩЬЮ УЛЬТРАЗВУКОВЫХ ИМПУЛЬСОВ 2003
  • Самокрутов А.А.
  • Козлов В.Н.
  • Шевалдыкин В.Г.
RU2231753C1
СПОСОБ ИМИТАЦИИ ДЕФЕКТОВ ПРИ УЛЬТРАЗВУКОВОМ КОНТРОЛЕ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Марков Анатолий Аркадиевич
RU2278377C2
СПОСОБ ПРОВЕРКИ РАБОТОСПОСОБНОСТИ УЛЬТРАЗВУКОВОГО ДЕФЕКТОСКОПА 2004
  • Марков А.А.
RU2262101C1
СПОСОБ УЛЬТРАЗВУКОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ВОДОВОДОВ ГИДРОТЕХНИЧЕСКИХ ОБЪЕКТОВ 2015
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Федоров Максим Борисович
  • Концов Роман Валерьевич
  • Караваев Михаил Алексеевич
  • Синицын Алексей Алексеевич
RU2613624C1

Иллюстрации к изобретению RU 2 523 781 C1

Реферат патента 2014 года СПОСОБ И УСТРОЙСТВО КОНТРОЛЯ КАЧЕСТВА АКУСТИЧЕСКОГО КОНТАКТА ПРИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ

Использование: для контроля качества и акустического контакта при ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что осуществляют выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и выделение собственных реверберационных шумов дефектоскопа и по сравнению амплитуд реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа контролируют контакт электроакустического преобразователя с контролируемым материалом. Технический результат: повышение достоверности контроля качества акустического контакта. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 523 781 C1

1. Способ контроля качества акустического контакта при ультразвуковой дефектоскопии изделий, заключающийся в том, что осуществляют выделение структурных реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и по его уровню оценивают наличие акустического контакта, отличающийся тем, что дополнительно осуществляют выделение собственных реверберационных шумов дефектоскопа и по сравнению амплитуд реверберационных шумов на фоне принятых эхо-сигналов от возможных дефектов и собственных реверберационных шумов дефектоскопа контролируют контакт электроакустического преобразователя с контролируемым материалом.

2. Устройство контроля качества акустического контакта при ультразвуковой дефектоскопии, содержащее электроакустический преобразователь дефектоскопа, сигналы с которого, содержащие собственные реверберационные шумы преобразователя и реверберационные шумы структуры контролируемого материала, поступают на временной селектор, имеющий два выхода, к первому выходу которого последовательно подключены первый усилитель, первый интегратор и первый компаратор, а ко второму выходу временного селектора последовательно подключены второй усилитель, второй интегратор и второй компаратор, с выходов первого и второго компаратора информация поступает на вход логической схемы И, к выходу которой подсоединен индикатор, свидетельствующий о наличии или отсутствии акустического контакта.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523781C1

Устройство к ультразвуковому дефектоскопу для контроля качества акустического контакта 1990
  • Якушев Михаил Леонидович
  • Чапаев Шамиль Гениатович
  • Лукманов Рев Карамович
  • Нарицын Владимир Васильевич
SU1753405A1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА АКУСТИЧЕСКОГО КОНТАКТА ПРИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ 1998
  • Миронов Ф.С.
  • Марков А.А.
  • Молотков С.Л.
RU2141653C1
Способ контроля акустического контакта при ультразвуковой дефектоскопии 1975
  • Гурович Анатолий Константинович
  • Кузьмина Лидия Ивановна
  • Старунов Борис Павлович
SU574668A1
US 7193617B1, 20.03.2007
US 20090287085A1, 19.11.2009

RU 2 523 781 C1

Авторы

Гусаров Вадим Реджинальдович

Мокроусов Александр Сергеевич

Терешин Сергей Николаевич

Шершов Алексей Вячеславович

Даты

2014-07-20Публикация

2013-02-01Подача