РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pMind-vapB, СОДЕРЖАЩАЯ НУКЛЕОТИДНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ, КОДИРУЮЩУЮ ГЕН vapB MSMEG_1283 Российский патент 2014 года по МПК C12N15/00 

Описание патента на изобретение RU2524148C2

Изобретение относится к микробиологии и генной инженерии и может быть использовано при создании аттенуированной вакцины против Mycobacterium tuberculosis в медицине.

Проблема борьбы с туберкулезом, опережающим по уровню смертности другие инфекции и уносящим около 2 миллионов человеческих жизней ежегодно, существенно осложняется тем, что МТВ (Mycobacterium tuberculosis) - возбудители этой болезни - способны выживать в латентном (покоящемся) состоянии. По данным ВОЗ каждый третий житель Земли является носителем латентного туберкулеза, потенциально способного перейти в острую форму. Вакцинирование живой вакциной (BCG) также приводит к образованию латентных форм BCG, которые при ослаблении иммунитета способны реактивироваться и вызывать BCG-инфекции. Актуально получение живых вакцинных препаратов, не способных к переходу в латентное состояние. В переходе бактерий в покоящееся состояние участвуют бактериальные токсины, компоненты ТА систем (Gerdes K, Christensen SK, Lobner-Olesen A, Nat Rev Microbiol. (2005) May; 3(5):371-82). ТА система является двухкомпонентной, токсины нарушают такие важнейшие клеточные функции, как трансляция, репликация, синтез компонентов клеточной стенки, антитоксины контролируют активность токсинов, связывая его в комплексы (Makarova Kira S, Wolf Yuri I and Koonin Eugene V Biol Direc (2009)).

Наиболее распространены ТА семейства VapBC. Мишенью токсина VapC является тРНК (Winther KS, Gerdes K. Proc Natl Acad Sci USA (2011) 108(18):7403-7). Антитоксин VapB является ингибитором токсина VapC.

Задачей изобретения является рекомбинантная плазмидная ДНК pMind-vapB, представляющая фрагмент ДНК с геном vapB (MSMEG_1283), обеспечивающая гиперэкспрессию гена vapB в М. tuberculosis. Рекомбинантная плазмида pMind получена и описана ранее (Blokpoel MC, Murphy HN, O'Toole R, Wiles S, Runn ES, Stewart GR, Young DB, Robertson BD, Nucleic Acids Res. 2005 Feb 1;33(2):e22). Рекомбинантный штамм Mycobacterium tuberculosis-VapB, полученный путем введения в штамм М. tuberculosis Rv37 рекомбинантной плазмидной ДНК pMind-VapB, утрачивает способность образовывать латентные формы, что позволит обезопасить применение аттенуированных противотуберкулезных вакцин.

Получение рекомбинантной плазмидной ДНК pMind-vapB, содержащей ген антитоксина VapB

pMind-vapB плазмида была получена на основе вектора pMind, позволяющего осуществлять контролируемую, индуцированную экспрессию под контролем тетрациклин-зависимого промотора. Клонированный ген vapB кодирует антитоксин VapB Mycobacterium smegmatis. Клонирование vapB осуществлено следующим образом: Выделенная с помощью Genomic DNA Purification Kit (Fermentas) ДНК М. smegmatis использовалась в качестве матрицы для амплификации гена vapB. ПЦР проводилась с использованием праймеров (рис.1). В праймеры были введены сайты рестрикции BamHI и SpeI. Сайты выделены подчеркиванием. Амплификация проводилась в следующем режиме: шаг 1. 94°С - 5 минут, шаг 2. 94°С - 30 секунд, шаг 3. - 56°С - 30 секунд, шаг 4. - 72°С 60 секунд; далее цикл шаг 2, шаг 3, шаг 4 - 25 раз, далее 72°С - 5 минут. Продукт амплификации выделялся согласно протоколу с помощью Gel and PCR Clean-up System (Promega) и клонировался в вектор pGEM-T (Promega) с помощью Т4 ligase (Promega). Трижды отмытые стерильным 10% С3Н8О3 в деионизованной Н2О клетки E.coli (штамм BMHI) были трансформированы лигазной смесью методом электропорации согласно протоколу Bio-Rad. Трансформированные клетки высевались на селективную агаризованную среду NB (Nutrient broth) (Himedia), содержащую 50 мкг/мл ампициллина, 0,2 mM IPTG, 0,004% X-Gal. Через 20 часов отбирались белые колонии и анализировались вышеописанным методом ПЦР. ПЦР-позитивные колонии инокулировали в 4 мл NB среды, содержащей 50 мкг/мл ампициллина. Вектор pGEM-vapBC выделяли согласно протоколу с помощью DNA Purification Kit (Promega). Вектор pGEM-vapBC был гидролизован по сайту рестрикции BsaBI, в 1% агарозе электрофоретически была отделена часть, соответствующая гену vapC, вектор pGEM-vapB с удаленной большей частью гена vapC был выделен с помощью Gel and PCR Clean-up System (Promega), затем лигирован и трансформирован в, как описано выше, E.coli (штамм ВМHI). Трансформированные клетки высевались на селективную агаризованную среду NB, содержащую 50 мкг/мл ампициллина, колонии отбирались так же, как описано выше, по размеру амплифицированного фрагмента. Выделение вектора pGEM-vapB из ПЦР-позитивных колоний проводили так же, как описано выше. Выделенный вектор гидролизовали по сайтам рестрикции BamHI и SpeI, вектор pMind гидролизовали по тем же сайтам. Продукты гидролиза разделяли электрофоретически в 1% агарозе, нужные фрагменты выделяли с помощью Gel and PCR Clean-up System. После чего фрагмент гена VapB лигировали в вектор pMind. Лигазную смесь трансформировали, как описано выше, в E.coli штамм (BMHI). Полученные колонии анализировались вышеописанным методом ПЦР. Выделение вектора pMind-vapB из ПЦР-позитивных колоний проводили так же, как описано выше. Полученный вектор при введении в М. tuberculosis обеспечивал гиперпродукцию антитоксина VapB указанными бактериями.

Клонированная в pMind VapB последовательность 636 пар оснований - рис.2.

Аминокислотная последовательность клонированного в pMind белка VapB (92 аминокислоты) - рис.3.

Трансформация штамма М. tuberculosis рекомбинантной плазмидной ДНК pMind-vapB

Трансформация штамма М. tuberculosis (MTB) генетической конструкцией pMind-vapB проводилась согласно протоколу (Parish Tanya and Stoker Neil G Human press, Totowa, New Jersey. (1998)). Рекомбинантная плазмидная ДНК pMind-vapB позволяет осуществлять гиперэкспрессию антитоксина VapB в штаммах Mycobacterium tuberculosis.

Описание гиперэкспрессии VapB М. tuberculosis

Полученный М. tuberculosis-vapB штамм был протестирован на способность образовывать покоящиеся формы в условиях культивирования при низких значениях рН (Shleeva МО, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL, Tuberculosis. 2011 Mar;91(2):146-54). Полученный штамм потерял способность образовывать покоящиеся формы (Рис.4). Разность между количеством клеток, подсчитанных после реактивации бактерий методом предельных разведении (МПР), и количеством колониеобразующих единиц (КОЕ) демонстрирует образование покоящихся форм М. tuberculosis.

Штамм М. tuberculosis-vapB с введенной плазмидой pMind-vapB неспособен образовывать дормантные формы.

Существуют модели получения покоящихся форм M. smegmatis. В одной из моделей при культивировании на модифицированной питательной среде клетки M. smegmatis теряли способность культивироваться на твердых средах и переходили в состояние покоя (Рис. 5) (Shleeva M, Mukamolova GV, Young M, Williams HD, Kaprelyants AS Microbiology (2004) 150(Pt 6):1687-97).

Трансформация штамма M. smegmatis генетической конструкцией pMmd-vapB проводилась согласно протоколу (Parish Tanya and Stoker Neil G Human press, Totowa, New Jersey. (1998)). В результате введения вектора pMind-vapB, позволяющего осуществить гиперэкспрессию антитоксина VapB в M. smegmatis, получен штамм M. smegmatis - vapB, гиперэкспрессирующий антитоксин VapB. Было обнаружено, что гиперэкспрессия антитоксина VapB приводит к полной потере способности клетками штамма M. smegmatis - vapB образовывать покоящиеся некультивируемые формы (рис.6). Полученный результат свидетельствуют об отсутствие видовой специфичности действия антитоксина VapB для видов Smegmatis и Tuberculosis, и позволяет считать, что гиперэкспрессия антитоксина VapB в различных штаммах МТБ будет приводить к утрате способности образовывать дормантные формы.

Краткое описание рисунков:

На рис.1 приведены последовательности праймеров, которые использовались для проведения ПЦР. В праймеры были введены сайты рестрикции BamHI и SpeI. Сайты выделены подчеркиванием.

На рис.2 приведена клонированная в вектор pMind VapB последовательность 636 пар оснований.

На рис.3 приведена аминокислотная последовательность клонированного в вектор pMind белка VapB (92 аминокислоты).

На рис.4 показана способность штаммов M. tuberculosis и M. tuberculosis-vapB к образованию дормантных форм. КОЕ (колония образующая единица) отражает количество активных клеток в ростовой среде, НВЧ (наиболее вероятное число) отражает реактивацию дормантных клеток + количество активных клеток. Математическая разность между КОЕ и НВЧ - количество дормантных клеток в культуре.

На рис.5 показана динамика роста и образования покоящихся некультивированных форм клетками контрольного рекомбинантного штамма Wt - pMind M. smegmatis.

На рис.6 показана динамика роста клеток рекомбинантных штаммов Wt - pMind и Wt - pMind-vapB M. smegmatis. () - динамика образования некультивируемых покоящихся форм рекомбинантным штаммом Wt - pMind; () - динамика роста клеток рекомбинантного штамма Wt - pMind-vapB.

Похожие патенты RU2524148C2

название год авторы номер документа
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pMind-vapC, СОДЕРЖАЩАЯ НУКЛЕОТИДНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ, КОДИРУЮЩУЮ ГЕН vapC MSMEG_1284 2012
  • Демидёнок Оксана Игоревна
  • Гончаренко Анна Владимировна
  • Капрельянц Арсений Сумбатович
RU2524143C2
Фрагмент ДНК, содержащий нуклеотидную последовательность с инвертированными повторами MITEKpnl у колистин-резистентных штаммов Klebsiella pneumoniae 2020
  • Шамина Ольга Вячеславовна
  • Маянский Николай Андреевич
  • Лазарева Анна Валерьевна
  • Крыжановская Ольга Андреевна
  • Алябьева Наталья Михайловна
  • Бржозовская Екатерина Анатольевна
RU2736114C1
ТЕСТ-СИСТЕМА Mycobacterium smegmatis aphVIII+ ДЛЯ СКРИНИНГА ИНГИБИТОРОВ СЕРИН-ТРЕОНИНОВЫХ ПРОТЕИНКИНАЗ ЭУКАРИОТИЧЕСКОГО ТИПА 2014
  • Беккер Ольга Борисовна
  • Даниленко Валерий Николаевич
  • Маслов Дмитрий Антонович
RU2566998C1
Способ моделирования дормантного состояния Mycobacterium tuberculosis in vitro 2018
  • Батыршина Яна Рэмовна
RU2707941C1
СПОСОБ СОЗДАНИЯ РЕКОМБИНАНТНОГО АДЕНОВИРУСА ПТИЦ ДЛЯ ВАКЦИНАЦИИ И ГЕННОЙ ТЕРАПИИ 2007
  • Народицкий Борис Савельевич
  • Шмаров Максим Михайлович
  • Логунов Денис Юрьевич
  • Гинцбург Александр Леонидович
  • Верховская Людмила Викторовна
  • Тутыхина Ирина Леонидовна
  • Шувалова Евгения Александровна
  • Карпов Андрей Павлович
  • Зубкова Ольга Вадимовна
  • Седова Елена Сергеевна
RU2326942C1
НОВАЯ ЭФФЕКТИВНАЯ ЛЕКАРСТВЕННАЯ МИШЕНЬ ДЛЯ ЛЕЧЕНИЯ ТУБЕРКУЛЕЗА 2008
  • Риккарди Джованиа
  • Манина Джулия
  • Паска Мария Розалия
RU2474621C2
СПОСОБ ПОЛУЧЕНИЯ ЭКСПРЕССИОННОГО ПЛАЗМИДНОГО ВЕКТОРА, ОБЛАДАЮЩЕГО ПОВЫШЕННОЙ СТАБИЛЬНОСТЬЮ НАСЛЕДОВАНИЯ В КЛЕТКАХ Escherichia coli 2008
  • Исаева Алина Сергеевна
  • Куликов Евгений Евгеньевич
  • Летаров Андрей Викторович
RU2422504C2
Аллерген, содержащий комбинацию последовательностей белков, кодируемых генами EsxA, EsxB, EspJ, EspK M.tuberculosis complex, и способ его применения для диагностики инфекции M.tuberculosis complex 2017
  • Максимов Николай Львович
  • Начарова Елена Петровна
  • Савина Наталья Николаевна
RU2636490C1
ВАКЦИНЫ РЕКОМБИНАНТНЫХ ВНУТРИКЛЕТОЧНЫХ ПАТОГЕНОВ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ 2001
  • Хорвиц Маркус А.
  • Харт Гюнтер
RU2266132C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PZIFN 2α, КОДИРУЮЩАЯ СИНТЕЗ АЛЬФА-2B-ИНТЕРФЕРОНА ЧЕЛОВЕКА, И ШТАММ ESCHERICHIA COLI - ПРОДУЦЕНТ АЛЬФА-2B-ИНТЕРФЕРОНА ЧЕЛОВЕКА 2002
  • Беляков Н.В.
  • Варданян Н.В.
  • Денисов Л.А.
  • Зеров Ю.П.
  • Коробицын Л.П.
  • Калинин Ю.Т.
  • Мурашов Б.В.
  • Пивоваров А.М.
  • Попов О.В.
  • Прокопьев А.А.
RU2229517C1

Иллюстрации к изобретению RU 2 524 148 C2

Реферат патента 2014 года РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pMind-vapB, СОДЕРЖАЩАЯ НУКЛЕОТИДНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ, КОДИРУЮЩУЮ ГЕН vapB MSMEG_1283

Изобретение относится к микробиологии и генной инженерии и представляет собой рекомбинантную плазмидную ДНК pMind-vapB, представляющую собой плазмиду pMind, в которую клонирована последовательность, представленная на рис.2. Рекомбинантная плазмидная ДНК pMind-vapB позволяет осуществлять гиперэкспрессию антитоксина VapB в штаммах Mycobacterium tuberculosis. 6 ил.

Формула изобретения RU 2 524 148 C2

Рекомбинантная плазмидная ДНК pMind-vapB, обеспечивающая гиперэкспрессию гена vapB в клетках M.tuberculosis, представляющая собой плазмиду pMind, в которую клонирована нуклеотидная последовательность

RU 2 524 148 C2

Авторы

Гончаренко Анна Владимировна

Демидёнок Оксана Игоревна

Капрельянц Арсений Сумбатович

Даты

2014-07-27Публикация

2012-10-23Подача