Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химически связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки.
Известны композиции для получения пористых заполнителей (для бетонов) на основе химических связующих следующего состава, мас.%: жидкое стекло - 45-65; хлорид натрия - 5-15; отход горно-обогатительной фабрики при обогащения угля - 15-20; межсланцевая глина, образующаяся при добыче горючих сланцев - 15-20 /пат. Российской Федерации №2440312, МПК С04В 14/24. Композиция для производства пористого заполнителя. / Абдрахимова Е.С., Рощупкина И.Ю., Абдрахимов В.З., Куликов В.А.; заявитель и патентообладатель Самарский государственный аэрокосмический университет имени академика С.П. Королева. - №2010122114, заявл. 31.05.20910; опубл. 20.01.2012. Бюл. №2/ [1].
Недостатком указанного состава композиции является относительно низкая прочность 2,65-2,75 МПа.
Наиболее близкой к изобретению является композиция для получения жаростойких композитов, включающая следующие компоненты, мас.%: глиноземсодержащий шлам - 10,5-10,53 (220 кг/м3); отработанный катализатор ИМ-2201 - 10,5-10,53 (220 кг/м3); щебень - 35,88-35,89 (750 кг/м3); песок - 30,62-30,63 (640 кг/м3); H3PO4 - 12,44-12,45 (260 кг/м3) /Хлыстов А.И. Повышение эффективности жаростойких композитов за счет применения химических связующих / А.И. Хлыстов, С.В. Соколова, А.В. Власов // Строительные материалы, оборудование, технологии XXI века. - 2012. - №9. - С.38-42/ [2].
Недостатком указанного состава керамической массы является относительно низкий предел прочности при сжатии после твердения и нагревания до температуры 1200°С и низкая термостойкость.
Сущность изобретения - повышение качества жаростойкого композита.
Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов.
Указанный технический результат достигается тем, что в известную композицию, включающую отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно вводят шламы никель-скелетного катализатора с содержанием, мас.%: SiO2 - 5,3; Al2O3 - 26,8; Fe2O3 - 0,8; CaO - 2,9; MgO - 1,3; R2O - 24,7; п.п.п.- 37,1 при следующем соотношении компонентов, мас.%:
Шламы никель-скелетного катализатора образуются в процессе обработки алюминиевых сплавов на металлообрабатывающих и металлургических заводах. Скелетный никелевый катализатор
NiAl2+6NaOH--->Ni+2Na3AlO3+3H2
Никель Ренея, иначе «скелетный никель» - твердый микрокристаллический пористый никелевый катализатор, используемый во многих химико-технологических процессах; способ его приготовления предложил в 1926 г. американский инженер Мюррей Реней. Скелетный никелевый катализатор представляет собой серый высокодисперсный порошок (размер частиц обычно 400 - 800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 мас.%) и насыщенный водородом (до 33%). Частицы порошка имеют большое количество пор, вследствие чего удельная поверхность составляет около 100 м/г. Никель Ренея пирофорен, т.е. самовоспламеняется на воздухе при комнатной температуре, поэтому его хранят под слоем воды, спирта либо бензина. Химический оксидный состав шламов никель-скелетного катализатора шлаков представлен в таблице 1, а поэлементный - в таблице 2.
Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов, алкенов, растительных масел и т.п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Структурная и тепловая стабильность никеля Ренея позволяет использовать его в широком диапазоне условий проведения реакции; в лабораторной практике, возможно, его многократное использование. Никель Ренея каталитически значительно менее активен, чем металлы платиновой группы, но значительно дешевле последних.
Получают никель Ренея сплавления при 1200°С никеля с алюминием (20-50% Ni; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидрооксида натрия с концентрацией 10-35%; остаток промывают водой в атмосфере водорода. Лежащий в основе приготовления никеля Ренея принцип используется и для получения каталитически активных форм других металлов - кобальта, меди, железа и т.д.
Минералогический состав шлама никель-скелетного катализатора в основном состоит из гидрооксида алюминия, примесей гидроалюминатов и гидрокарбонатов натрия.
В качестве фосфатных связующих использовалась ортофосфорная кислота H3PO4 в чистом виде, но можно использовать однозамещенный фосфорнокислый алюминий Al(H2PO4)3, двухзамещенный фосфорнокислый алюминий Al2(H2PO4)3, хромалюминий фосфорнокислый или алюмохромофосфатное связующее (АХФС) с общей формулой CrnAl4-n(H2PO4)2, где=1, 2, 3.
Сведения, подтверждающие возможность осуществления изобретения Технологический процесс производства бесцементных жаростойких бетонов и изготовления изделий и конструкций из них включает в себя приготовление формовочной массы, формование изделий и термообработку.
Следует отметить, что для своего затвердения и набора марочной прочности жаростойкие бетоны требуют особую термообработку.
Для бетонов на ортофосфорной кислоте с компонентами, представленными в таблице 3, - нагревание до 500°C с подъемом температуры до 200°C со скоростью 60°C/час и до 500-150°C/час, выдерживание в течение 4 часов, охлаждение вместе с печью.
В таблице 4 представлены физико-механические показатели жаростойкого бетона.
Как видно из таблицы 4, жаростойкий бетон из предложенных составов имеет более высокие показатели по механической прочности и термостойкости, чем прототип.
Полученное техническое решение при использовании шламов никель-скелетного катализатора позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона.
Использование техногенного сырья при получении жаростойкого бетона способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2526090C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2553115C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2568443C2 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2580866C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2567911C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2524155C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2528643C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2521005C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ КОМПОЗИТОВ | 2013 |
|
RU2521980C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЖАРОСТОЙКИХ БЕТОНОВ | 2014 |
|
RU2574438C1 |
Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Техническим результатом изобретения является повышение предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, дополнительно содержит шлам никель-скелетного катализатора с содержанием, мас.%: SiO2 - 5,3; Al2O3 - 26,8; Fe2O3 - 0,8; CaO - 2,9; MgO - 1,3; R2O - 24,74; п.п.п. - 37,1 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 10-15; щебень 33-40; песок 10-13; ортофосфорная кислота H3PO4 10-15; шлам никель-скелетного катализатора 24-30 с содержанием, мас.%: SiO2 - 5,3; Al2O3 - 26,8; Fe2O3 - 0,8; CaO - 2,9; MgO - 1,3; R2O - 24,7401, п.п.п. - 37,1. 4 табл.
Композиция для изготовления жаростойких композитов, включающая отработанный катализатор ИМ-2201, щебень, песок и H3PO4, отличающаяся тем, что она дополнительно содержит шлам никель-скелетного катализатора с содержанием, мас.%: SiO2 - 5,3; Al2O3 - 26,8; Fe2O3 - 0,8; CaO - 2,9; MgO - 1,3; R2O - 24,74; п.п.п. - 37,1 при следующем соотношении компонентов, мас.%:
ХЛЫСТОВ А.И | |||
Повышение эффективности жаростойких композитов за счёт применения химических связующих | |||
Строительные материалы, оборудование,технологии ХХI века, 2012 | |||
0 |
|
SU404813A1 | |
Огнеупорная масса | 1987 |
|
SU1578107A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Огнеупорная масса для футеровки индукционных тигельных печей | 1985 |
|
SU1301811A1 |
Жаростойкий торкрет-бетон | 1980 |
|
SU876593A1 |
Способ изготовления сопротивлений из манганиновой проволоки в стеклянной изоляции | 1960 |
|
SU131812A1 |
БЕТОННАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ | 0 |
|
SU299482A1 |
Бетонная смесь | 1975 |
|
SU555064A1 |
US 6783799 В1, 31.08.2004 | |||
Устройство для изготовления пленки | 1983 |
|
SU1147442A1 |
Авторы
Даты
2014-06-27—Публикация
2013-01-29—Подача