Изобретение относится к термостойким материалам фосфатного твердения, обладающих высокой электропроводностью. Могут быть использованы в области электромагнитных, авиационных и космических технологий, в строительной отрасли.
В настоящее время особый интерес представляют термостойкие материалы, обладающие хорошей (высокой) электропроводностью. В большинстве случаев основу (матрицу) термостойких материалов составляют фосфатные вяжущие системы как наиболее эффективные с точки зрения технологии изготовления изделий, так и сточки зрения эксплуатационных характеристик [1. В.А.Копейкин, А.П.Петрова, И.Л.Рашкован. материалы на основе металлофосфатов. // -М. :Химия», 1976, стр 3-200. 2. А.Г.Судакас. Фосфатные вяжущие системы. // -Санкт-Петербург, 2008, стр.227-228]. Термостойкие материалы с повышенной электропроводностью получают путем введения в матрицу металлических или неметаллических проводящих компонентов. Использование металлических и, в большинстве случаев, неметаллических наполнителей приводит к значительному увеличению массы (веса) вещества, что является весьма нежелательным для многих изделий, особенно тех, которые используются в ракетно-космической и авиационной технике. Очень эффективными с этой точки зрения оказались углеродсодержащие волокнистые материалы и углеродные нанотрубки. Кроме хорошей электроводности, они обладают высокой прочностью, химической и радиационной стойкостью.
Известен электропроводящий термостойкий фосфатный материал (вяжущее), включающее ортофосфорную кислоту (27,8-34,8 вес. %), фосфорсодержащее углеродное волокно (16,7-21,7 вес. %) и окись меди (остальное) [3. Авторское свидетельство СССР, №522158, кл. С04В 29/02, 1976].
Введение в состав вяжущего фосфорсодержащего углеродного волокна привело к уменьшению удельного электросопротивления на 7-8 порядков, а коэффициента термического расширения в 25 раз. Кроме того, материалы обладают водостойкостью и высокой прочностью. Недостатком данного материала является невысокая электропроводность и трудоемкий процесс получения фосфорированного углеродного волокна.
Наиболее близким к предлагаемому изобретению является электропроводящий термостойкий фосфатный материал (сырьевая смесь для изготовления вяжущего [4. Авторское свидетельство СССР №1701695А1, кл. С04В 28/34, 1991], который содержит (масс. %): ортофосфорную кислоту (28,6-31,0) - связующее, оксид меди (57,5-68,0) - наполнитель, медьсодержащее углеродное волокно (3,4-11,5) - модифицирующая добавка. Изобретение позволило повысить водостойкость указанного материала в 4 раза, а удельное объемное электросопротивление снизить до 10-30 Ом·м. Недостатком этого изобретения является невысокая электропроводность и трудоемкость процесса получения медьсодержащего углеродного волокна. Полученные значения не являются достаточно высокими и ограничивают широкое использование данного материала в промышленности.
Задачей заявляемого изобретения является снижение удельного объемного сопротивления разрабатываемого материала при сохранении его высоких показателей по прочности и термостойкости.
Поставленная задача достигается тем, что электропроводящий термостойкий фосфатный композиционный материал, состоящий из связующего, наполнителя и модифицирующей добавки, содержит в качестве связующего - алюмофосфатное соединение (АФС), в качестве наполнителя - смесь оксида и нитрида алюминия (9,0:1,0), а в качестве модифицирующей добавки - углеродные нанотрубки (УНТ) при следующем соотношении компонентов, масс. %.: алюмофосфатная связка: -14-16, УНТ -0,5-2, наполнитель (Al2O3-AlN): - остальное.
Отличительными признаками изобретения являются: состав и соотношение компонентов.
Предлагаемый электропроводящий термостойкий композиционный материал состоит из алюмофосфатного связующего, наполнителя, состоящего из смеси оксида алюминия(Al2O3) и нитрида алюминия(AlN) при массовом соотношении, равном 9,0:1,0 соответственно и модифицирующей добавки.
Алюмофосфатное связующее готовится путем растворения гидроксида алюминия в растворе фосфорной кислоты с массовой долей 60%. Мольное отношение H3PO4/Al(ОН)3 равно - 3. Растворение производится при непрерывном перемешивании и слабом нагревании (80-90°С) до получения прозрачного гомогенного раствора. После охлаждения раствора до комнатной температуры (15-25°С) раствор разбавляют до плотности, равной 1,35-1,45 г/см3.
Наполнитель: однородная смесь порошков оксида и нитрида алюминия с массовым соотношением 9,0:1,0.
Модифицирующая добавка - углеродные нанотрубки (УНТ), получены известным способом парофазного осаждения (CVD) с использованием раствора ферроцена (2 масс. %) в толуоле при температуре 800°С, скорость потока 250 см3/мин, продолжительность синтеза - 15 мин. Средний размер УНТ: длина 10-20 мкм, толщина - 9-20 нм.
Приготовление образцов
Алюмофосфатную связку (АФС), смесь основного наполнителя и УНТ в массовых соотношениях в соответствии с таблицей 1 перетирают в агатовой ступке до получения однородной массы, которую затем помещают в пресс-форму с диаметром 15 мм и прессуют при давлении 50 кгс/см2. Полученные образцы (бруски, таблетки) отверждают при комнатной температуре в течение суток, а затем нагревают до 200°С со скоростью 1°С/мин, после выдержки в течение 1 часа образцы охлаждают в печи.
Сочетание качественного и количественного соотношения компонентов позволило повысить функциональные характеристики материала. Результаты измерения удельного объемного электросопротивления (Ом·м) образцов представлены в таблице.
композиционногоматериала, масс. %
Термостойкий алюмофосфатный композиционный материал с УНТ характеризуется более низким, в сравнении с прототипом, значением удельного объемного сопротивления (ниже на 1,5-2 порядка) при практически неизменных параметрах по прочности (σсжатия ≥ 30 МПа) и термостойкости (до 600°С). При использовании смеси состава 2, 3 не достигается эффект приобретения композицией максимальных значений электропроводимости. Превышение содержания УНТ над предлагаемым (более 2 масс. %) не позволяет достичь необходимой гомогенности состава при перемешивании компонентов и ухудшает физико-механические свойства композиционного материала.
Таким образом, заявленный электропроводящий термостойкий фосфатный композиционный материал позволяет снизить удельное объемное сопротивление на 1,5-2 порядка и сократить количество введенной дорогостоящей модифицирующей добавки до 2%.
название | год | авторы | номер документа |
---|---|---|---|
Материал для резистивного нагревателя | 1981 |
|
SU982207A1 |
Композитный катодный материал и способ его получения | 2020 |
|
RU2758442C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОИСТОГО ПЛАСТИКА | 2015 |
|
RU2586149C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО НАНОСТРУКТУРИРОВАННОГО КОМПОЗИЦИОННОГО ЭЛЕКТРОПРОВОДЯЩЕГО МАТЕРИАЛА | 2011 |
|
RU2473368C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО КОМПОЗИЦИОННОГО ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ | 2015 |
|
RU2606842C1 |
Полимерные композиции, содержащие нанотрубки | 2016 |
|
RU2669090C2 |
СУХАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ШУНГИТА ДЛЯ ПОЛУЧЕНИЯ МАТЕРИАЛОВ С УНИКАЛЬНЫМ СОЧЕТАНИЕМ СВОЙСТВ (ШУНГИЛИТ) | 2013 |
|
RU2540747C1 |
СПОСОБ ФОРМИРОВАНИЯ ЭЛЕКТРОПРОВОДЯЩИХ СЛОЕВ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК | 2012 |
|
RU2522887C2 |
СПОСОБ РЕГУЛИРОВАНИЯ ПОВЕРХНОСТНОГО СОПРОТИВЛЕНИЯ ИЗДЕЛИЙ ИЗ ЭЛЕКТРОПРОВОДЯЩИХ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, МОДИФИЦИРОВАННЫХ УГЛЕРОДНЫМИ НАНОТРУБКАМИ | 2023 |
|
RU2810534C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ РАДИАТОРОВ ОХЛАЖДЕНИЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ (СИД) И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2012 |
|
RU2522573C2 |
Изобретение относится к термостойким материалам фосфатного твердения, обладающих высокой электропроводностью, которые могут быть использованы в области электромагнитных, авиационных и космических технологий, а также в строительной отрасли. Изобретения позволяет снизить удельное объемное сопротивление композиционного материала при сохранении высоких показателей по прочности и термостойкости. Электропроводящий термостойкий фосфатный композиционный материал содержит алюмофосфатное связующее, наполнитель- смесь оксида и нитрида алюминия и модифицирующую добавку - углеродные нанотрубки (УНТ), при соотношении компонентов композиционного материала, масс. %: алюмофосфатная связка - 14-16, УНТ - 0,5-2, наполнитель (Аl2О3-AlN) - остальное. 1 табл.
Электропроводящий термостойкий фосфатный композиционный материал, состоящий из связующего, наполнителя и модифицирующей добавки, отличающийся тем, что он содержит в качестве связующего - алюмофосфатное связующее (АФС), в качестве наполнителя - смесь оксида алюминия и нитрида алюминия (9,0:1,0), а в качестве модифицирующей добавки - углеродные нанотрубки (УНТ) при следующем соотношении компонентов, масс.%:
Сырьевая смесь для изготовления вяжущего | 1990 |
|
SU1701695A1 |
Вяжущее | 1975 |
|
SU522158A1 |
ПОЛИМЕРНЫЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ НАНОТРУБКИ | 2006 |
|
RU2389739C2 |
ОТВЕРЖДАЮЩАЯСЯ БЕЗ НАГРЕВА КОМПОЗИЦИЯ СВЯЗУЮЩЕГО И СПОСОБ ПОЛУЧЕНИЯ ФОРМОВАННОГО ИЗДЕЛИЯ С ЕЕ ИСПОЛЬЗОВАНИЕМ | 2003 |
|
RU2324706C2 |
ТЕРМОЧУВСТВИТЕЛЬНЫЙ РАСТВОР ФОСФАТА АЛЮМИНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ЕГО ПРИМЕНЕНИЕ | 2007 |
|
RU2415077C1 |
EP 1962293 A1, 27.08.2008 | |||
EP 1349179 A1, 01.10.2003 | |||
WO 2004097853 A1, 11.11.2004 |
Авторы
Даты
2014-07-27—Публикация
2013-01-09—Подача