СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИОФАГА Российский патент 2014 года по МПК C12N7/00 A61K35/76 

Описание патента на изобретение RU2525141C1

Изобретение относится к микробиологии и может быть использовано в биотехнологии получения продукции, содержащей бактериофаги.

Бактериофаги - это вирусы, характеризующиеся специфической способностью к избирательному инфицированию бактериальных клеток, принадлежащих к одному штамму или антигенно-гомологичным штаммам одного вида или рода с последующим лизисом (после внутриклеточной репликации) клетки-хозяина - вирулентные фаги или интегрированием в бактериальный геном с образованием лизогенов - умеренные фаги (Adams H.M. Bacteriophages. - New York: Interscience Publishers, Inc., London: Interscience Publishers ltd., 1959. - 592 p.). По многочисленным данным литературы, фаги могут быть использованы в качестве природных антимикробных агентов для борьбы с бактериальными инфекциями у людей, животных и сельскохозяйственных культур (Alisky J., Iczkowski К., Rapoport,A., Troitsky N. Bacterio-phages show promise as antimicrobial agents // The Journal of infection. - 1998. - Vol.36, №1. P.5-15; Brussow H. Phage therapy: the Escherichia coli experience // Microbiology. - 2005. - Vol.151, Pt.7. - P.2133-2140; Бондаренко В.М. Клинический эффект и пути рационального использования лечебных бактериофагов в медицинской практике // Приложение к Журналу инфектологии. - 2011. - Т.3, №3. - С.15-19). Ряд авторов допускают возможность практического применения бактериофагов как средств деконтаминации в пищевой промышленности как безопасной для человека и безвредной для окружающей среды альтернативы химическим и физическим методам элиминации бактерий (Greer G.G. Bacteriophage control of foodborne bacteria // Journal of food protection. - 2005. - Vol.68, №5. - P.1102-1111; Lang L.H. FDA approves use of bacteriophages to be added to meat and poultry products // Gastroenterology. - 2006. - Vol.131, №5. - P.1370-1372; Алешкин А.В., Зейгарник М.В. Возможности применения бактериофагов в качестве пробиотических средств деконтаминации в области питания // Вопросы диетологии. - 2012. - Т. 2, №4. - С.24-34).

Одним из приоритетных показателей производства фагосодержащей продукции является получение фаголизатов с исходно высоким титром бактериофагов (Гольдфарб Д.М. Бактериофагия. - М.: Медгиз, 1961. - С.17-19).

Известным, предложенным для различных бактериофагов способом получения фаголизатов с высоким титром бактериофагов является культивирование бактерий штамма-хозяина с бактериофагом на плотной питательной среде с последующим получением суспендированного фаголизата с поверхности плотной питательной среды (SU 64612, 30.04.1945; Кузьмин Н.А., Комаров Б.А. Способ быстрого получения сибиреязвенных фагов в высоких концентрациях // Лабораторное дело. - 1967. - №12. - С.741-743).

Основными недостатками данных аналогов заявляемого изобретения являются недостаточная универсальность способа для получения продукции с использованием различных бактериофагов, недостаточная стабильность титра бактериофагов в фаголизате и отсутствие или недостаточность очистки фаголизата для использования фагосодержащей продукции в пищевой промышленности при получении фаголизата с титром бактериофага 1011-1013 БОЕ/мл.

Наиболее близким аналогом - прототипом - является способ получения концентрированных препаратов фага, заключающийся в посеве на чашки с агаром смеси из концентрированной культуры бактерий и фага в количестве, достаточном для получения сплошного лизиса. После инкубации при 37°C в течение 12-18 часов в чашки наливают 3-5 мл бульона и оставляют на 20 минут. Затем бульон сливают и центрифугируют. Надосадочную жидкость отсасывают. Согласно прототипу приготовленный таком образом фаг может содержать 1011-1012 частичек на 1 мл (Гольдфарб Д.М. Бактериофагия. - М.: Медгиз, 1961. - С.18).

Основными недостатками прототипа являются недостаточная универсальность способа для получения продукции с использованием различных бактериофагов, недостаточная стабильность титра бактериофагов в фаголизате и недостаточность очистки фаголизата для использования фагосодержащей продукции в пищевой промышленности при получении очищенного фаголизата с титром бактериофага 1011-1013 БОЕ/мл.

Главной задачей заявляемого изобретения является обеспечение универсальности способа получения фаголизата с использованием различных бактериофагов, стабильности титра бактериофагов в фаголизате с его очисткой для использования фагосодержащей продукции в пищевой промышленности при получении очищенного фаголизата с титром бактериофага 1011-1013 БОЕ/мл.

Задача решена тем, что бактериальную культуру штамма-хозяина в титре 108-109 КОЕ/мл засевают в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм, культивируют в течение 3-3,5 часов при оптимальной температуре для роста культуры штамма-хозяина, затем на полученный газон культуры штамма-хозяина засевают маточный бактериофаг в титре 105-106 БОЕ/мл, герметично закрывают сосуд для культивирования, культивируют в течение 13-15 часов при оптимальной температуре для роста культуры штамма бактериофага и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм, получают фаголизат при суспендировании бактериофага с поверхности плотной питательной среды физиологическим раствором или буферным раствором с pH 7,0-7,2 в количестве 0,04-0,045 мл на 1 см2 поверхности плотной питательной среды, отсасывают фаголизат в стерильную емкость, добавляют хлороформ, выдерживают в течение 30-45 минут при непрерывном шуттелировании, центрифугируют в течение 30-45 минут при 5000-6000 об./мин, стерилизуют надосадочную жидкость фильтрацией через фильтр с диаметром пор 0,2-0,22 мкм и пропускают полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину. После центрифугирования можно смешивать надосадочные жидкости, содержащие бактериофаги, затем стерилизовать смесь надосадочных жидкостей фильтрацией через фильтр с диаметром пор 0,2-0,22 мкм и пропускать полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину. В качестве сосуда для культивирования можно использовать стеклянный микробиологический матрац.

В результате впервые проведенных нами исследований была определена обеспечивающая решение поставленной задачи новая совокупность оригинальных отличительных признаков: установлены универсальные, промышленно применимые условия эффективного культивирования бактериофагов (форма и толщина слоя плотной питательной среды, толщина слоя воздуха над поверхностью плотной питательной среды, герметизация сосуда для культивирования), подобран титр маточного бактериофага, определены варианты и количества суспендирующего раствора, необходимые для обеспечения высокой концентрации бактериофагов в фаголизате и качественной очистки фагов, предложена оптимальная последовательность и продолжительность операций очистки фаголизата.

Из патентно-технической литературы и практики производства фагосодержащей продукции неизвестно о способе получения бактериофага с использованием культивирования бактериофагов на культуре бактерий на плотной питательной среде, который был бы идентичен заявляемому.

Отсюда правомерен вывод о соответствии заявляемого решения критерию «новизна».

Указанная выше совокупность существенных признаков необходима и достаточна для получения технического результата - обеспечения универсальности способа получения фаголизата с использованием различных бактериофагов, стабильности титра бактериофагов в фаголизате с его очисткой для использования фагосодержащей продукции в пищевой промышленности при получении очищенного фаголизата с титром бактериофага 1011-1013 БОЕ/мл.

Между существующими признаками и решаемой задачей существует причинно-следственная связь, где каждый признак необходим и влияет на получение технического результата, а вместе взятые признаки достаточны для его получения. Правомерен вывод о соответствии заявляемого технического решения критерию «изобретательский уровень».

Предлагаемый способ может быть реализован многократно с использованием присущих ему существенных признаков, а значит, заявляемое техническое решение соответствует критерию «промышленная применимость».

Заявляемое изобретение апробировано при получении вариантов очищенного фаголизата, содержащего различные бактериофаги. Ниже приводятся результаты этой апробации. При этом приведенные примеры получения бактериофагов показывают конкретную реализацию заявляемого изобретения, но не ограничивают объем притязаний формулы заявляемого изобретения.

Пример 1. Для получения бактериофага, активного в отношении Salmonella enterica серовар Typhimurium, бактериальную культуру штамма-хозяина - Salmonella enterica серовар Typhimurium - в титре 108 КОЕ/мл засевали в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм.

Штамм-хозяин культивировали в течение 3,5 часов при оптимальной температуре для его роста (+37°C), затем на полученный газон культуры Salmonella enterica серовар Typhimurium засевали маточный бактериофаг в титре 105 БОЕ/мл, герметично закрывали сосуд для культивирования (стекляный микробиологический матрац) и культивировали бактериофаг в течение 13 часов при оптимальной температуре для роста культуры штамма бактериофага (+37°C) и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм.

Фаголизат получали при суспендировании бактериофага с поверхности плотной питательной среды физиологическим раствором в количестве 0,04 мл на 1 см2 поверхности плотной питательной среды.

Затем отсасывали фаголизат в стерильную емкость, добавляли хлороформ, выдерживали в течение 30 минут при непрерывном шуттелировании, центрифугировали в течение 30 минут при 6000 об./мин, стерилизовали надосадочную жидкость фильтрацией через фильтр с диаметром пор 0,2 мкм и пропускали полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину.

Полученный очищенный фаголизат в виде элюата содержал бактериофаги в титре 1013 БОЕ/мл при отсутствии бактерий, ингредиентов использованной питательной среды и при концентрации эндотоксина менее 50 единиц эндотоксина на 1 мл очищенного фаголизата (ЕЭ/мл).

Пример 2. Для получения бактериофага, активного в отношении Escherichia coli O104:H4, бактериальную культуру непатогенного штамма-хозяина - Escherichia coli К 12 С600 - в титре 109 КОЕ/мл засевали в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм.

Штамм-хозяин культивировали в течение 3,2 часов при оптимальной температуре для его роста (+37°C), затем на полученный газон культуры Escherichia coli К12 С600 засевали маточный бактериофаг в титре 106 БОЕ/мл, герметично закрывали сосуд для культивирования (стекляный микробиологический матрац) и культивировали бактериофаг в течение 14 часов при оптимальной температуре для роста культуры штамма бактериофага (+37°C) и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм.

Фаголизат получали при суспендировании бактериофага с поверхности плотной питательной среды буферным раствором с pH 7,0 в количестве 0,042 мл на 1 см2 поверхности плотной питательной среды.

Затем отсасывали фаголизат в стерильную емкость, добавляли хлороформ, выдерживали в течение 40 минут при непрерывном шуттелировании, центрифугировали в течение 40 минут при 5500 об./мин.

Для получения бактериофага, активного в отношении Listeria monocytogenes, бактериальную культуру непатогенного штамма-хозяина - Listeria innocua - в титре 109 КОЕ/мл засевали в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм.

Штамм-хозяин культивировали в течение 3 часов при оптимальной температуре для его роста (+37°C), затем на полученный газон культуры Listeria innocua засевали маточный бактериофаг в титре 105 БОЕ/мл, герметично закрывали сосуд для культивирования (стекляный микробиологический матрац) и культивировали бактериофаг в течение 15 часов при оптимальной температуре для роста культуры штамма бактериофага (+22°C) и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм.

Фаголизат получали при суспендировании бактериофага с поверхности плотной питательной среды буферным раствором с pH 7,2 в количестве 0,045 мл на 1 см2 поверхности плотной питательной среды.

Затем отсасывали фаголизат в стерильную емкость, добавляли хлороформ, выдерживали в течение 45 минут при непрерывном шуттелировании, центрифугировали в течение 45 минут при 5000 об./мин.

Смешивали надосадочные жидкости двух полученных фаголизатов.

Смесь надосадочных жидкостей стерилизовали фильтрацией через фильтр с диаметром пор 0,22 мкм и пропускали полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину.

Полученная очищенная смесь (коктейль) фаголизатов в виде элюата содержала эшерихиозный бактериофаг в титре 101 БОЕ/мл и листериозный бактериофаг в титре 1011 БОЕ/мл при отсутствии бактерий, ингредиентов использованной питательной среды и при концентрации эндотоксина менее 50 ЕЭ/мл.

Пример 3. Для получения бактериофага, активного в отношении Salmonella enterica серовар Typhimurium, бактериальную культуру штамма-хозяина - Salmonella enterica серовар Typhimurium - в титре 108 КОЕ/мл засевали в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм.

Штамм-хозяин культивировали в течение 3,5 часов при оптимальной температуре для его роста (+37°C), затем на полученный газон культуры Salmonella enterica серовар Typhimurium засевали маточный бактериофаг в титре 105 БОЕ/мл, герметично закрывали сосуд для культивирования (стекляный микробиологический матрац) и культивировали бактериофаг в течение 13 часов при оптимальной температуре для роста культуры штамма бактериофага (+37°C) и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм.

Фаголизат получали при суспендировании бактериофага с поверхности плотной питательной среды буферным раствором с pH 7,1 в количестве 0,042 мл на 1 см2 поверхности плотной питательной среды.

Затем отсасывали фаголизат в стерильную емкость, добавляли хлороформ, выдерживали в течение 32 минуты при непрерывном шуттелировании, центрифугировали в течение 32 минуты при 6000 об./мин.

Для получения бактериофага, активного в отношении Listeria monocytogenes, бактериальную культуру непатогенного штамма-хозяина - Listeria innocua - в титре 109 КОЕ/мл засевали в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм.

Штамм-хозяин культивировали в течение 3 часов при оптимальной температуре для его роста (+37°C), затем на полученный газон культуры Listeria innocua засевали маточный бактериофаг в титре 105 БОЕ/мл, герметично закрывали сосуд для культивирования (стекляный микробиологический матрац) и культивировали бактериофаг в течение 15 часов при оптимальной температуре для роста культуры штамма бактериофага (+24°C) и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм.

Фаголизат получали при суспендировании бактериофага с поверхности плотной питательной среды буферным раствором с pH 7,2 в количестве 0,045 мл на 1 см2 поверхности плотной питательной среды.

Затем отсасывали фаголизат в стерильную емкость, добавляли хлороформ, выдерживали в течение 45 минут при непрерывном шуттелировании, центрифугировали в течение 45 минут при 5000 об./мин.

Смешивали надосадочные жидкости двух полученных фаголизатов.

Смесь надосадочных жидкостей стерилизовали фильтрацией через фильтр с диаметром пор 0,22 мкм и пропускали полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину.

Полученная очищенная смесь (коктейль) фаголизатов в виде элюата содержала сальмонеллезный бактериофаг в титре 1012 БОЕ/мл и листериозный бактериофаг в титре 1011 БОЕ/мл при отсутствии бактерий, ингредиентов использованной питательной среды и при концентрации эндотоксина менее 50 ЕЭ/мл.

Похожие патенты RU2525141C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИОФАГА 2015
  • Алёшкин Андрей Владимирович
  • Афанасьев Станислав Степанович
  • Галимзянов Халил Мингалиевич
  • Несвижский Юрий Владимирович
  • Орлов Сергей Владимирович
  • Рубальский Евгений Олегович
  • Рубальский Олег Васильевич
  • Свистунов Андрей Алексеевич
  • Смирнова Камила Николаевна
  • Чикобава Мераб Георгиевич
RU2603730C1
СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИОФАГА 2015
  • Рубальский Евгений Олегович
  • Чикобава Мераб Георгиевич
  • Синица Александр Владимирович
  • Рубальский Олег Васильевич
  • Алёшкин Андрей Владимирович
  • Афанасьев Станислав Степанович
  • Смирнова Камила Николаевна
RU2613423C1
Композиция антибактериальная для продления срока годности охлажденной рыбы и снижения риска возникновения инфекций, передаваемых пищевым путем, штаммы бактериофагов, используемые для ее получения 2016
  • Зулькарнеев Эльдар Ринатович
  • Алешкин Андрей Владимирович
  • Киселева Ирина Анатольевна
  • Рубальский Евгений Олегович
  • Рубальский Олег Васильевич
  • Лебедев Николай Сергеевич
RU2644667C1
Антибактериальная композиция на основе штаммов бактериофагов для профилактики или лечения сальмонеллеза и/или эшерихиоза сельскохозяйственных животных или птиц, или человека 2019
  • Алешкин Андрей Владимирович
  • Лаишевцев Алексей Иванович
  • Зулькарнеев Эльдар Ринатович
  • Смирнов Дмитрий Дмитриевич
  • Киселева Ирина Анатольевна
  • Капустин Андрей Владимирович
  • Якимова Эльвира Алексеевна
  • Пименов Николай Васильевич
  • Рубальский Евгений Олегович
  • Ленев Сергей Васильевич
  • Гапотченко Константин Олегович
RU2705302C1
КОМПОЗИЦИЯ АНТИБАКТЕРИАЛЬНАЯ ДЛЯ ПРОФИЛАКТИКИ ИЛИ ЛЕЧЕНИЯ ГОСПИТАЛЬНЫХ ИНФЕКЦИЙ (ВАРИАНТЫ), ШТАММЫ БАКТЕРИОФАГОВ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПОЛУЧЕНИЯ ТАКОЙ КОМПОЗИЦИИ 2015
  • Алешкин Андрей Владимирович
  • Воложанцев Николай Валентинович
  • Веревкин Владимир Васильевич
  • Красильникова Валентина Михайловна
  • Мякинина Вера Павловна
  • Попова Анастасия Владимировна
  • Светоч Эдуард Арсеньевич
RU2628312C2
АНТИБАКТЕРИАЛЬНАЯ КОМПОЗИЦИЯ В ВИДЕ СУППОЗИТОРИЯ И СПОСОБ ЕЕ ПРИГОТОВЛЕНИЯ 2016
  • Алешкин Андрей Владимирович
  • Анурова Мария Николаевна
  • Киселева Ирина Анатольевна
  • Попова Ольга Алексеевна
RU2622762C1
Антибактериальная композиция (варианты) и применение белка в качестве антимикробного средства, направленного против бактерий Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Salmonella typhi и Staphylococcus haemolyticus (варианты) 2019
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гинцбург Александр Леонидович
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
RU2730613C1
СРЕДСТВО ДЛЯ ПОМЕЩЕНИЙ ДЕЗОДОРИРУЮЩЕЕ С СОДЕРЖАНИЕМ БАКТЕРИОФАГОВ 2014
  • Васильев Дмитрий Аркадьевич
  • Шестаков Андрей Геннадьевич
  • Жуков Андрей Викторович
RU2574023C2
Антибактериальная композиция (варианты) и применение белка в качестве антимикробного средства, направленного против бактерий Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Salmonella typhi и Staphylococcus haemolyticus (варианты) 2019
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гинцбург Александр Леонидович
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
RU2730614C1
Антибактериальная композиция (варианты) и применение белка в качестве антимикробного средства, направленного против грамотрицательных бактерий: Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae и Salmonella typhi (варианты) 2019
  • Антонова Наталия Петровна
  • Васина Дарья Владимировна
  • Гинцбург Александр Леонидович
  • Ткачук Артем Петрович
  • Гущин Владимир Алексеевич
RU2730615C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИОФАГА

Представленный способ получения бактериофага включает: засев бактериальной культуры штамма-хозяина в титре 108-109 КОЕ/мл в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм, культивирование в течение 3-3,5 часов при оптимальной температуре для роста культуры штамма-хозяина, затем на полученный газон культуры штамма-хозяина засевают маточный бактериофаг в титре 105-106 БОЕ/мл и культивируют в течение 13-15 часов при оптимальной температуре и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм. Получают фаголизат и отсасывают в стерильную емкость, добавляют хлороформ, выдерживают в течение 30-45 минут при непрерывном шуттелировании. Центрифугируют и стерилизуют надосадочную жидкость фильтрацией через фильтр с диаметром пор 0,2-0,22 мкм. Охарактеризованное решение обеспечивает универсальную возможность получения фаголизата с использованием различных бактериофагов, стабильность титра бактериофагов в фаголизате и возможность его применения для использования в пищевой промышленности 2 з.п. ф-лы, 3 пр.

Формула изобретения RU 2 525 141 C1

1. Способ получения бактериофага с использованием культивирования бактериофагов на культуре бактерий на плотной питательной среде, отличающийся тем, что бактериальную культуру штамма-хозяина в титре 108-109 КОЕ/мл засевают в сосуд для культивирования на скошенную плотную питательную среду с толщиной слоя от 10 мм до 25 мм, культивируют в течение 3-3,5 часов при оптимальной температуре для роста культуры штамма-хозяина, затем на полученный газон культуры штамма-хозяина засевают маточный бактериофаг в титре 105-106 БОЕ/мл, герметично закрывают сосуд для культивирования, культивируют в течение 13-15 часов при оптимальной температуре для роста культуры штамма бактериофага и толщине слоя воздуха над поверхностью плотной питательной среды от 25 мм до 40 мм, получают фаголизат при суспендировании бактериофага с поверхности плотной питательной среды физиологическим раствором или буферным раствором с pH 7,0-7,2 в количестве 0,04-0,045 мл на 1 см2 поверхности плотной питательной среды, отсасывают фаголизат в стерильную емкость, добавляют хлороформ, выдерживают в течение 30-45 минут при непрерывном шуттелировании, центрифугируют в течение 30-45 минут при 5000-6000 об./мин, стерилизуют надосадочную жидкость фильтрацией через фильтр с диаметром пор 0,2-0,22 мкм и пропускают полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину.

2. Способ по п.1, отличающийся тем, что после центрифугирования смешивают надосадочные жидкости, содержащие бактериофаги, затем стерилизуют смесь надосадочных жидкостей фильтрацией через фильтр с диаметром пор 0,2-0,22 мкм и пропускают полученный фильтрат через колонку, содержащую агент, аффинный к эндотоксину.

3. Способ по п.1, отличающийся тем, что в качестве сосуда для культивирования используют стеклянный микробиологический матрац.

Документы, цитированные в отчете о поиске Патент 2014 года RU2525141C1

СПОСОБ ПОЛУЧЕНИЯ СИБИРЕЯЗВЕННОГО БАКТЕРИОФАГА ГАММА А-26 1999
  • Солодовников Б.В.
  • Тюменцева И.С.
  • Ефременко В.И.
  • Афанасьев Е.Н.
RU2171842C2
СПОСОБ ВЫДЕЛЕНИЯ БАКТЕРИОФАГОВ 1996
  • Байгузина Ф.А.
  • Киняпина Н.Л.
  • Исрафилов А.Г.
  • Лютов А.Г.
RU2109055C1
US 20070010001 A1, 11.01.2007

RU 2 525 141 C1

Авторы

Киселева Ирина Анатольевна

Алешкин Андрей Владимирович

Верёвкин Владимир Васильевич

Светоч Эдуард Арсеньевич

Афанасьев Станислав Степанович

Рубальский Евгений Олегович

Рубальская Елена Евгеньевна

Рубальский Максим Олегович

Ефимова Ольга Григорьевна

Васильев Дмитрий Аркадьевич

Золотухин Сергей Николаевич

Даты

2014-08-10Публикация

2013-06-07Подача