СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ Российский патент 2014 года по МПК G01N33/52 G01N21/25 G01N21/33 

Описание патента на изобретение RU2526176C2

Настоящее изобретение относится к созданию средств и способов мониторинга окружающей среды и биологических объектов на предмет определения содержания ионов металлов в жидких средах с использованием фотохромных соединений.

В качестве фотохромных соединений используются соединения из классов спиропиранов (Z=C) (а), спирооксазинов (Z=N) (а) и хроменов (б), испытывающих обратимые фотоиндуцированные превращения (рис.1) с образованием мероцианиновой формы, образующей комплексы с ионами металлов.

Известен способ спектрофотометрического определения ионов металлов, основанный на спектральном сдвиге полос поглощения мероцианиновой формы спиропиранов, величина которого зависит от природы металла в результате комплексообразования образующейся мероцианиновой формы с ионами металлов [А.К., Gorner H. Chem. Phys. 1998. V.237. N 2. P.425].

Данное изобретение относится к разработке нового способа спектрофотометрического селективного определения ионов металлов путем их комплексообразования с фотоиндуцированной мероцианиновой формой хроменов.

Наиболее близким прототипом изобретения выбран способ спектрофотометрического определения содержания ионов металлов в растворах с использованием фотохромного хромена - 3-(4-диметиламинофенил)-3-(4-диметиламинонафтил)-3Н-нафто[2,1-b]пирана [Barachevsky V.A., Strokach Yu.P., Puankov Yu.A., Kobeleva O.I., Valova T.M., Levchenko K.S., Yarovenko V.N., Krayushkin M.M. ARKIVOC. 2009. N. IX. P.70]:

Недостатком известного способа является неприемлемая в ряде случаев селективность определения содержания ионов металлов из-за незначительных трудно выявляемых спектральных сдвигов при комплексообразовании мероцианиновой формы с ионами металлов. Это затрудняет, а в ряде случаев исключает определение конкретных ионов металлов в жидких средах, содержащих смесь ионов.

Задачей настоящего изобретения является повышение селективности спектрофотометрического определения ионов металлов с использованием фотохромных соединений из класса хроменов.

Поставленная задача достигается тем, что в способе спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр1), 2,2,8,8-тетракис(4-метоксифенил) диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h] антрацен (Хр 3), 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4).

Новизна заявленных признаков состоит в способе спектрофотометрического определения содержания ионов металлов в жидких средах с использованием фотохромных бисхроменов, которые обеспечивают определение ионов металлов по появлению новой полосы поглощения комплексов, образующихся между фотоиндуцированной формой и ионами металлов.

Изучение и анализ известной научно-технической и патентной литературы показал, что полной совокупности признаков, характеризующих данные технические решения, не известно, т.е. заявляемые решения отвечают критерию "новизна".

Сущность изобретения поясняется примерами и рисунками.

На рис.1 представлена обобщенная схема фотохромных превращений спиросоединений и хроменов, а также структурные формулы исследованных соединений.

На рис.2 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле до (1) и после УФ облучения(2-4).

На рис.3 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле в присутствии ионов Mg+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-4).

На рис.4 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле в присутствии ионов Ag+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-10).

На рис.5 представлены спектры поглощения раствора соединения Хр1 в ацетонитриле в присутствии ионов Ag+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-4).

На рис.6 представлены спектры поглощения раствора соединения Хр 1 в ацетонитриле в присутствии ионов Ag+2 при соотношении концентраций L/Ме=1:100 до (1), после УФ облучения (2-6).

Изобретение иллюстрируется следующими примерами

Пример 1. 2,2,11,11-Тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучают УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимумы полос поглощения в видимой области спектра. Полученные экспериментальные данные заносят в таблицу 1. Фотоиндуцированные спектральные изменения представляют в виде рис.2.

Пример 2. В раствор, приготовленный по п.1, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Фотоиндуцированные спектральные изменения представляют в виде рис.3. Из табл.1 и рис.3 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионов металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 3. В раствор, приготовленный по п.1, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1 и представляют в виде рис.4. Из табл.1 и рис.4 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 490 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 665 нм, свидетельствующая об образовании комплекса с ионом Ag2+.

Пример 4. В раствор, приготовленный по п.1, добавляют раствор катионов Li+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1, вносят данные в табл.1. Из табл.1 видно, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 5. В раствор, приготовленный по п.1, добавляют раствор катионов Ва2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 6. В раствор, приготовленный по п.1, добавляют раствор катионов Tb3+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 и рис.5 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 480 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 715 нм, свидетельствующая об образовании комплекса.

Пример 7. В раствор, приготовленный по п.1, добавляют раствор катионов Pb2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 и рис.6 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 480 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 645 нм, свидетельствующая об образовании комплекса.

Пример 8. В раствор, приготовленный по п.1, добавляют раствор катионов Cd2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.1 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы при 480 нм практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 9. 2,2,8,8-Тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучают УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимумы полос поглощения в видимой области спектра. Полученные экспериментальные данные заносят в табл.1.

Пример 10. В раствор, приготовленный по п.9, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы располагается при 510 нм и практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 11. В раствор, приготовленный по п.9, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 490 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 685 нм, свидетельствующая об образовании комплекса.

Пример 12. В раствор, приготовленный по п.9, добавляют раствор катионов Li+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 13. В раствор, приготовленный по п.9, добавляют раствор катионов Ва2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.9 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 14. 3,3,11,11-Тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучали УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимум полос поглощения в видимой области спектра, который располагался при 490 нм. Полученные экспериментальные данные заносят в табл.1.

Пример 15. В раствор, приготовленный по п.14, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы располагается при 485 нм и практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 16. В раствор, приготовленный по п.14, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 490 нм, совпадающей с полосой поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 735 нм, свидетельствующая об образовании комплекса.

Пример 17. В раствор, приготовленный по п.14, добавляют раствор катионов Ва2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 18. В раствор, приготовленный по п.14, добавляют раствор катионов Tb3+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.14 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 19. 3,3,10,10-Тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4) растворяют в ацетонитриле (С=2·10-4 М). Измеряют спектр поглощения раствора, определяют максимумы полос поглощения. Затем раствор облучают УФ светом лампы LC-4 фирмы "Hamamatsu" через стеклянный светофильтр УФС-1, повторно измеряют спектр поглощения раствора и определяют максимум полосы поглощения в видимой области спектра, который располагается при 505 нм. Полученные экспериментальные данные заносят в табл.1.

Пример 20. В раствор, приготовленный по п.19, добавляют раствор катионов Mg2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы располагается при 510 нм и практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 21. В раствор, приготовленный по п.19, добавляют раствор катионов Ag2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что в спектре фотоиндуцированного поглощения кроме полосы поглощения при 505 нм, близкой к положению полосы поглощения мероцианиновой формы хромена, появляется вторая полоса поглощения с максимумом при 745 нм, свидетельствующая об образовании комплекса.

Пример 22. В раствор, приготовленный по п.19, добавляют раствор катионов Tb3+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 23. В раствор, приготовленный по п.19, добавляют раствор катионов Pb2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Пример 24. В раствор, приготовленный по п.19, добавляют раствор катионов Cd2+ в соотношении фотохромное соединение:катион металла=1:100. Проводят спектральные измерения по п.19 и вносят данные в табл.1. Из табл.1 следует, что максимум полосы поглощения фотоиндуцированной мероцианиновой формы практически совпадает с максимумом этой формы, измеренным в растворе, не содержащем ионы металла. Это свидетельствует об отсутствии в растворе комплексов с этим катионом.

Таблица 1. Спектральные характеристики комплексообразования между мероцианиновой формой бисхроменов и катионами металлов. Концентрация фотохромных соединений С=2·10-4 М, соотношение их концентраций и катионов металлов 1:100. Соединение Катион металла л А м а к с , нм л В м а к с , нм (в видимой области спектра) Хр 1 - 365,385 485 Mg2+ 365,385 485 Ag2+ 365,385 490,665 Li+ 365, 385 480 Ва2+ 365,385 485 Tb3+ 365,385 480,715

Pb2+ 365,385 480, 645 Cd2+ 365,385 480 Хр 2 - 380,395 505 Mg2+ 380,395 510 Ag2+ 380,395 490,685 Li+ 360,400 510 Ba2+ 380,395 505 Хр 3 - 425,450 490 Mg2+ 425,450 485 Ag2+ 425,450 490,735 Ba2+ 425,450 490 Tb3+ 425,450 495 Хр 4 - 280,425,450 505 Mg2+ 280,425, 450 510 Ag2+ 280,425, 455 505, 745 Tb3+ 280,425,450 510 Pb2+ 280,425,450 510 Cd2+ 280,425,450 510 Примечание: λ А м а к с и λ В м а к с - длины волн максимумов полос поглощения исходной и фотоиндуцированной форм фотохромного соединения и его комплексов с ионами металлов

Как видно из приведенных примеров, использование бисхроменов обеспечивает селективное определение ионов металлов в результате комплексообразования бисхроменов определенной структуры с конкретными ионами металлов по появлению новой полосы поглощения, в частности 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1) обеспечивает селективное определение ионов Ag2+, Tb3+ и Pb2+, а 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3) и 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h] антрацен (Хр 4) - определение ионов Ag2+.

Похожие патенты RU2526176C2

название год авторы номер документа
СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КАТИОНОВ МЕТАЛЛОВ 2012
  • Барачевский Валерий Александрович
  • Айт Антон Оскарович
  • Горелик Александр Михайлович
  • Кобелева Ольга Игоревна
  • Валова Татьяна Михайловна
  • Венидиктова Ольга Владимировна
  • Попова Галина Викторовна
RU2510013C1
Фотохромные производные 5'-гидроксиметил-6-нитро-1',3',3'-триметилспиро[2Н-1-бензопиран-2,2'-индолина] 2019
  • Ходонов Андрей Александрович
  • Беликов Николай Евгеньевич
  • Лукин Алексей Юрьевич
  • Левин Петр Петрович
  • Варфоломеев Сергей Дмитриевич
  • Демина Ольга Викторовна
RU2694904C1
1,3,3-триметил-5-метокси-6´-бром-8´-[(Е)-2-(1´´,3´´,3´´-триметил-5-метокси-3Н-индолий-2´´-ил)винил]-спиро[индолин-2,2´-2Н-хромен] йодид, обладающий фотохромными свойствами 2022
  • Козленко Анастасия Сергеевна
  • Пугачёв Артем Дмитриевич
  • Макарова Надежда Ивановна
  • Ожогин Илья Вячеславович
  • Ростовцева Ирина Александровна
  • Метелица Анатолий Викторович
  • Лукьянов Борис Сергеевич
RU2786996C1
СВЕТОЧУВСТВИТЕЛЬНАЯ КОМПОЗИЦИЯ ДЛЯ СВЕТОФИЛЬТРОВ ЗАЩИТНО-ПРОФИЛАКТИЧЕСКОГО НАЗНАЧЕНИЯ 2011
  • Островский Михаил Аркадьевич
  • Минкин Владимир Исаакович
  • Лукьянов Борис Сергеевич
  • Муханов Евгений Леонидович
  • Фельдман Татьяна Борисовна
RU2466173C1
СВЕТОЧУВСТВИТЕЛЬНЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ С ФЛУОРЕСЦЕНТНЫМ СЧИТЫВАНИЕМ ИНФОРМАЦИИ 2011
  • Травень Валерий Федорович
  • Долотов Сергей Михайлович
  • Иванов Иван Викторович
  • Барачевский Валерий Александрович
  • Кобелева Ольга Игоревна
  • Валова Татьяна Михайловна
  • Платонова Ирина Вячеславовна
  • Айт Антон Оскарович
RU2478116C2
Перхлораты 1,3,3-триметилспиро[хромен-2,2'-индолина], обладающие фотохромными свойствами 2016
  • Минкин Владимир Исаакович
  • Лукьянова Мария Борисовна
  • Лукьянов Борис Сергеевич
  • Ожогин Илья Вячеславович
  • Пугачев Артем Дмитриевич
  • Комиссарова Оксана Андреевна
  • Муханов Евгений Леонидович
RU2627358C1
ПОЛИМЕРНЫЙ МАТЕРИАЛ ДЛЯ ОПТИЧЕСКОЙ ЗАПИСИ ИНФОРМАЦИИ НА ОСНОВЕ ПРЕКУРСОРОВ ФЛУОРЕСЦИРУЮЩИХ СОЕДИНЕНИЙ И СПОСОБ ПОЛУЧЕНИЯ ЭТИХ СОЕДИНЕНИЙ 2016
  • Травень Валерий Федорович
  • Долотов Сергей Михайлович
  • Иванов Иван Викторович
  • Чепцов Дмитрий Андреевич
  • Мамиргова Зарина Заудиновна
  • Барачевский Валерий Александрович
RU2643951C1
СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНОГО РАСТВОРА НАНОЧАСТИЦ СЕРЕБРА С ЭКСТРАКТАМИ ЛИСТЬЕВ РАСТЕНИЙ 2019
  • Магомедбеков Эльдар Парпачевич
  • Антропова Ирина Геннадьевна
  • Кошкина Ольга Александровна
  • Смолянский Александр Сергеевич
RU2711559C1
ФОТОХРОМНАЯ РЕГИСТРИРУЮЩАЯ СРЕДА ДЛЯ ТРЕХМЕРНОЙ ОПТИЧЕСКОЙ ПАМЯТИ 2011
  • Краюшкин Михаил Михайлович
  • Яровенко Владимир Николаевич
  • Христофорова Людмила Витальевна
  • Левченко Константин Сергеевич
  • Барачевский Валерий Александрович
  • Айт Антон Оскарович
  • Дунаев Александр Александрович
  • Кобелева Ольга Игоревна
  • Валова Татьяна Михайловна
  • Пьянков Юрий Александрович
  • Шмелин Павел Сергеевич
  • Малышев Павел Борисович
  • Гребенников Евгений Петрович
RU2463330C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Якубовская Раиса Ивановна
  • Соловьёва Людмила Ивановна
  • Койфман Оскар Иосифович
  • Пономарёв Гелий Васильевич
  • Ластовой Антон Павлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
RU2548726C2

Иллюстрации к изобретению RU 2 526 176 C2

Реферат патента 2014 года СПОСОБ СПЕКРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ИОНОВ МЕТАЛЛОВ

Изобретение относится к мониторингу окружающей среды и биологических объектов на предмет определения содержания ионов металлов в жидких средах с использованием фотохромных соединений. В способе спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов в качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)диокса(1,12)трифенилен, 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен, 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[a,h]антрацен, 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен. Достигается повышение селективности определения. 24 пр., 1 табл., 6 ил.

Формула изобретения RU 2 526 176 C2

Способ спектрофотометрического определения ионов металлов в жидких средах с использованием фотохромных соединений из класса хроменов за счет образования комплексов между фотоиндуцированной мероцианиновой формой этих соединений и ионами металлов, отличающийся тем, что в качестве хроменов используются бисхромены, такие как 2,2,11,11-тетракис(4-метоксифенилфенил)-диокса(1,12)трифенилен (Хр 1), 2,2,8,8-тетракис(4-метоксифенил)диокса(1,7)хризен (Хр 2), 3,3,11,11-тетра-(4-метоксифенил)-3,11-дигидро-4,10-диоксадибензо[а,h]антрацен (Хр 3), 3,3,10,10-тетра-(4-метоксифенил)-3,10-дигидро-4,11-диоксадибензо[а,h]антрацен (Хр 4)

Документы, цитированные в отчете о поиске Патент 2014 года RU2526176C2

Barachevsky V.A
et
al
ARKIVOK
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
N
IX
P
Деревянный торцевой шкив 1922
  • Красин Г.Б.
SU70A1
Способ фотометрического определения тория 1960
  • Кузнецов В.И.
  • Саввин С.Б.
SU137300A1
CN 102183472 A, 14.09.2011
Мажукина О.А
Электрофильные и нуклеофильные реакции сложнопостроенных полиок-
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Автореферат дисс
на соискание ученой степени
к.х.н., Саратов, 2011, с
Печь для сжигания твердых и жидких нечистот 1920
  • Евсеев А.П.
SU17A1

RU 2 526 176 C2

Авторы

Барачевский Валерий Александрович

Айт Антон Оскарович

Горелик Александр Михайлович

Кобелева Ольга Игоревна

Валова Татьяна Михайловна

Венидиктова Ольга Владимировна

Попова Галина Викторовна

Даты

2014-08-20Публикация

2012-11-07Подача