СПОСОБ СКРЫТНОЙ РАДИОЛОКАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ Российский патент 2014 года по МПК G01S13/02 

Описание патента на изобретение RU2529483C1

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Достижение высокой эффективности обнаружения, локализации и идентификации наземных, морских и воздушных объектов ограничивается существенной априорной неопределенностью размеров, ориентации в пространстве, отражающих свойств и параметров движения объектов, а также несовершенством известных способов обнаружения и слежения за подвижными объектами.

Технология скрытного обнаружения и слежения за подвижными объектами, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения в диапазонах коротких, метровых, дециметровых и сантиметровых волн: широковещательные (коммерческое FM-радиовещание, телевидение высокой четкости), информационные (связь) и измерительные (управление, навигация), пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить скрытность и эффективность обнаружения, пространственной локализации и идентификации широкого класса подвижных объектов.

Известен способ скрытной радиолокации подвижных объектов [1], заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевой радиосигнал, включающий прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, из цифровых сигналов формируют прямой и сжатые рассеянные сигналы, сравнивают прямой и рассеянные сигналы и определяют временные задержки, доплеровские сдвиги и направления прихода рассеянных сигналов, по временным задержкам, доплеровским сдвигам и направлениям прихода выполняют обнаружение и пространственную локализацию воздушных объектов.

Данный способ не содержит операций подавления когерентной помехи в виде прямого радиосигнала передатчика и, как следствие, обеспечивает эффективное обнаружение только очень крупных близко расположенных объектов.

Более эффективным является способ скрытной радиолокации подвижных объектов [2], свободный от этого недостатка и выбранный в качестве прототипа. Согласно этому способу:

выбирают передатчик, излучающий радиосигнал с расширенным спектром;

синхронно принимают решеткой из N антенн многолучевой радиосигнал, включающий прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика;

синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s1,…,sn,...,sN} и запоминают;

из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R;

сигнал корреляционной матрицы R преобразуют в сигналы оптимальных весовых векторов для формирования прямого w=R-1v и рассеянных w=R-1v радиосигналов, где v - вектор наведения, определяемый азимутально-угломестным направлением приема радиосигнала, длиной волны и геометрией решетки, ℓ - номер азимутально-угломестного направления приема рассеянного радиосигнала;

преобразуют матричный цифровой сигнал S в прямой s=wHS и рассеянные s = w H S цифровые сигналы, где (·)H - символ эрмитова сопряжения, которые совместно со значением выбранного азимутально-угломестного направления приема рассеянного радиосигнала запоминают;

для каждого выбранного азимутально-угломестного направления приема формируют и запоминают зависящую от временного сдвига комплексную взаимно корреляционную функцию (ВКФ) между прямым цифровым сигналом s и рассеянным цифровым сигналом s;

определяют максимальное значение модуля комплексной ВКФ и фиксируют соответствующее этому максимуму значение комплексной ВКФ,

вычисляют разностный рассеянный цифровой сигнал;

формируют зависящую от временного и частотного сдвигов комплексную двумерную взаимно корреляционную функцию (ДВКФ) между разностным рассеянным цифровым сигналом и цифровым прямым сигналом;

по модулю комплексной ДВКФ определяют число сжатых рассеянных сигналов, а также значения задержки по времени и абсолютного доплеровского сдвига каждого сжатого рассеянного сигнала;

по значениям задержки и абсолютного доплеровского сдвига и азимутально-угломестного направления приема сжатых рассеянных сигналов обнаруживают и определяют пространственные координаты объекта.

Способ-прототип благодаря наличию операций адаптивной пространственной фильтрации и операций радиоэлектронной компенсации когерентной помехи в виде мощного прямого радиосигнала передатчика подсвета обеспечивает обнаружение более широкого класса объектов.

Однако данный способ-прототип содержит операции формирования классической двумерной взаимной корреляционной функции, которая, кроме основного лепестка, ограничивающего разрешающую способность и точность пространственной локализации целей, содержит высокие боковые лепестки, ограничивающие чувствительность обнаружения вследствие маскирования сигналов далеких и слабо рассеивающих целей.

Таким образом, недостатком способа-прототипа является низкая эффективность обнаружения и пространственной локализации широкого класса объектов.

Техническим результатом изобретения является повышение эффективности обнаружения и пространственной локализации широкого класса объектов.

Повышение эффективности обнаружения и пространственной локализации широкого класса объектов достигается за счет применения новых операций адаптивной и нелинейной обработки радиосигналов, адаптивно выделенных на множестве азимутально-угломестных направлений возможных положений контролируемых объектов.

Технический результат достигается тем, что в способе скрытной радиолокации подвижных объектов, заключающемся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевой радиосигнал, включающий прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s1,…,sn,…,sN}T и запоминают, из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R, сигнал корреляционной матрицы R преобразуют в сигналы оптимальных весовых векторов для формирования прямого w=R-1v и рассеянных w=R-1v радиосигналов, где v - вектор наведения, определяемый азимутально-угломестным направлением приема радиосигнала, длиной волны и геометрией решетки, ℓ - номер азимутально-угломестного направления приема рассеянного радиосигнала, преобразуют матричный цифровой сигнал S в прямой s=wHS и рассеянные s = w H S цифровые сигналы, где (·)H - символ эрмитова сопряжения, которые совместно со значением выбранного азимутально-угломестного направления приема рассеянного радиосигнала запоминают, согласно изобретению, преобразуют прямой цифровой сигнал s в матричный сигнал комплексной фазирующей функции А, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, запоминают матричный сигнал А, для каждого выбранного азимутально-угломестного направления приема преобразуют рассеянный цифровой сигнал s в сигнал комплексного частотно-временного изображения h ( 0 ) = ( A H A ) 1 A H s , где AH - матрица, эрмитово сопряженная с A, сигнал h ( 0 ) запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал Л ( h ( k 1 ) ) d i a g { | h z ( k 1 ) | 1 / 2 } , h z ( k 1 ) - z-й элемент вектора h ( k 1 ) , k=1, 2, … - номер итерации, и сигнал очередного приближения частотно-временного изображения h ( k ) = [ A H A + λ Л ( h ( k 1 ) ) ] 1 A H s , где λ - множитель Лагранжа, до тех пор, пока энергия разности текущего и запомненного предыдущего частотно-временных изображений не достигнет заданного малого значения, после чего по локальным максимумам квадрата модуля элементов текущего частотно-временного изображения | h z ( k ) | 2 определяют число рассеянных радиосигналов в выбранном азимутально-угломестном направлении, по параметрам которых - значению временной задержки, доплеровского сдвига каждого рассеянного радиосигнала и значению азимутально-угломестного направления приема рассеянных радиосигналов - выполняют обнаружение и пространственную локализацию подвижных объектов.

Операции способа поясняются чертежом.

Устройство, в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1, систему моделирования и выбора радиопередатчиков (РПД) 2, вычислительную систему 3 и блок управления и индикации 4.

В свою очередь, система приема и предварительной обработки 1 включает антенную решетку 1-1, тракт поиска источников подсвета, включающий преобразователь частоты 1-2, АЦП 1-3 и устройство обнаружения 1-4, а также тракт приема прямых и рассеянных сигналов, включающий преобразователь частоты 1-7, АЦП 1-6 и устройство адаптивной пространственной фильтрации 1-5. Вычислительная система 3 включает блок синтеза частотно-временного изображения 3-1, блок сравнения 3-2, устройство формирования вспомогательного и взвешивающего сигналов 3-3 и блок формирования сигнала фазирующей функции 3-4. При этом система 2 соединена с входом блока 4, а также имеет интерфейс для соединения с внешней базой РПД. Кроме того, блок 4 имеет выход, предназначенный для подключения к внешним системам.

Подсистема 1 является аналогово-цифровым устройством и предназначена для поиска и измерения параметров синхронизации передатчиков подсвета объектов, излучающих радиосигналы с расширенным спектром, а также для адаптивной пространственной фильтрации полезных прямых и рассеянных радиосигналов. Отметим, что после того как параметры синхронизации прямого радиосигнала выбранного передатчика подсвета измерены или когда они априорно известны, прямой радиосигнал передатчика может быть сформирован путем моделирования в системе 2.

Антенная решетка 1-1 состоит из N антенн с номерами n = 1, N ¯ . Пространственная конфигурация антенной решетки должна обеспечивать измерение азимутально-угломестного направления прихода радиосигналов и может быть произвольной пространственной конфигурацией: плоской прямоугольной, плоской кольцевой или объемной, в частности конформной. Для улучшения различения сигналов не только по пространству, но и по поляризации требуется существенное различие поляризационных откликов антенн решетки, то есть антенная решетка должна быть неоднородной (гетерогенной), то есть иметь антенные элементы с отличающимися векторными диаграммами направленности.

Преобразователи частоты 1-2 и 1-7 являются N-канальными, выполнены с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов.

АЦП 1-3 и 1-6 также является N-канальным и синхронизирован сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан). Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, как, например, в КВ диапазоне, то вместо преобразователей частоты 1-2 и 1-7 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме этого, преобразователи частоты 1-2 и 1-7 обеспечивают подключение одной из антенн вместо всех антенн решетки для периодической калибровки приемных каналов по внешнему источнику сигнала. Возможна калибровка с использованием внутреннего генератора, выход которого также подключается вместо всех антенн для периодической калибровки каналов.

Устройство обнаружения 1-4 и устройство адаптивной пространственной фильтрации 1-5 представляют собой вычислительные устройства.

Подсистема 2 является вычислительным устройством и предназначена для идентификации, отбора и периодического обновления передатчиков радиосигналов с расширенным спектром, используемых для подсвета заданной области воздушного пространства, а также для формирования модельных сигналов выбранных передатчиков.

Вычислительная система 3 предназначена для формирования сигнала фазирующей функции (блок 3-4), формирования вспомогательного и взвешивающего сигналов (устройство 3-3), сравнения сигналов частотно-временных изображений, формируемых на смежных итерациях (блок 3-2) и синтеза частотно-временного изображения рассеянных объектами радиосигналов (блок 3-1).

Устройство работает следующим образом.

В системе 2 на основе данных внешней базы радиопередатчиков, а также данных об обнаруженных радиопередатчиках подсвета, поступающих от устройства 1-4, с использованием программных средств моделирования идентифицируется, выбирается и периодически обновляется совокупность передатчиков, излучающих радиосигналы с расширенным спектром. При моделировании оцениваются возможные зоны покрытия, вероятности обнаружения и достижимые точности локализации и идентификации воздушных объектов различного класса, которые могут быть обеспечены при различных вариантах размещения передатчиков относительно станции обнаружения-пеленгования. Кроме того, в системе 2 регенерируются принятые прямые радиосигналы или формируются модельные сигналы передатчиков с требуемыми параметрами синхронизации.

Параметры выбранного множества передатчиков (номер, несущая частота, ширина спектра, форма, параметры синхронизации и мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно точки приема) запоминаются в подсистеме 2, поступают в блок 4, а также используются для настройки преобразователей 1-2 и 1-7. С целью упрощения цепи управления преобразователем не показаны.

По сигналам системы 2 преобразователь частоты 1-2 начинает перестраиваться с заданным темпом в заданном диапазоне частот поиска радиосигналов, например в диапазоне 10-1000 МГц. При этом тракт поиска осуществляет поиск и измерение параметров синхронизации передатчиков подсвета, излучающих радиосигналы с расширенным спектром, на частотах fk дискретной сетки частот поиска. При этом принятый каждым антенным элементом с номером n антенной решетки 1-1 зависящий от времени t радиосигнал skn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-2. Сформированные в преобразователе 1-2 радиосигналы skn(t) преобразуется с помощью АЦП 1-3 в цифровые сигналы, которые поступают в устройство обнаружения 1-4, в котором на каждой частоте fk дискретной сетки частот поиска осуществляется обнаружение и измерение параметров синхронизации передатчиков подсвета. Функционирование устройства обнаружения 1-4 основано на широко известных способах радиоконтроля, например [3].

Одновременно по сигналам системы 2 преобразователь частоты 1-7 перестраивается на заданную частоту приема fk. Тракт приема синхронно принимает на частоте fk многолучевые радиосигналы, включающие прямой радиосигнал выбранного передатчика с расширенным спектром и рассеянные объектами радиосигналы этого передатчика.

Принятый каждым антенным элементом с номером n антенной решетки 1-1 зависящий от времени t радиосигнал sn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-7.

Сформированные в преобразователе 1-7 радиосигналы sn(t) синхронно преобразуются с помощью АЦП 1-6 в цифровые сигналы sn={sn(1),…,sn(z),…,sn(Z)}, где z = 1, Z ¯ - номер временного отсчета сигнала.

Цифровые сигналы отдельных антенн sn поступают в устройство 1-5, где объединяются в матричный цифровой сигнал S={s1,…,sn,…,sN}T и запоминаются. Матричный сигнал S имеет размерность N×Z.

Кроме того, в устройстве 1-5 выполняются следующие действия:

- из матричного цифрового сигнала S формируется сигнал пространственной корреляционной матрицы R размером N×N;

- сигнал корреляционной матрицы R преобразуется в сигналы оптимальных весовых векторов для формирования прямого w=R-1v и рассеянных w=R-1v радиосигналов размером N×1, где v - вектор наведения размером N×1, определяемый азимутально-угломестным направлением приема радиосигнала, длиной волны (частотой fk) и геометрией решетки, ℓ - номер азимутально-угломестного направления приема рассеянного радиосигнала;

- матричный цифровой сигнал S преобразуется в прямой s=wHS и рассеянные s = w H S цифровые сигналы, где (·)H - символ эрмитова сопряжения.

Физически описанные операции адаптивной пространственной фильтрации обеспечивают одновременный направленный прием с заданных направлений полезного прямого сигнала выбранного передатчика подсвета и полезного рассеянного сигнала с одновременным подавлением широкого класса помех, приходящих с других направлений. Отметим, что технически реализуемая глубина подавления помехи достигает величины 40 дБ [4].

Это обеспечивает выигрыш в чувствительности при формировании слабых рассеянных сигналов на последующих этапах обработки.

Сформированные в устройстве 1-5 рассеянные цифровые сигналы s совместно со значением выбранного азимутально-угломестного направления приема рассеянного радиосигнала поступают в блок 3-1, а прямой цифровой сигнал s поступает в блок 3-4, где запоминаются.

После этого в блоке 3-4 цифровой прямой сигнал s преобразуется в матричный сигнал комплексной фазирующей функции A, который поступает в устройство 3-3, где также запоминается.

Преобразование прямого сигнала s в матричный сигнал A осуществляют по следующей формуле: A=[Ds0,…,Dsj,…,DsJ-1], где sj=[s(1-j),…,s(Z-j)]T - векторы размером Z×1, являющиеся сдвинутыми по времени на jTs версиями опорного сигнала s, j=0, …, J-1, J - число временных задержек прямого сигнала, Ts - период выборки сигнала;

D = [ D L , , D , , D 0 , D + , , D + L ] , D = [ 1 0 0 0 e j 2 π / Z 0 0 0 e j 2 π ( Z 1 ) / Z ]

- матрицы доплеровских сдвигов, ℓ=0, …, ±L, L - размер координатной сетки по доплеровскому сдвигу.

Таким образом, столбцы матрицы А представляют собой задержанные по времени и сдвинутые по частоте доплеровского сдвига версии прямого сигнала s, а размер этой матрицы Z×J(2L+1) определяется числом отсчетов в разведываемом сигнале (длительностью интервала наблюдения) и размерами координатной сетки по временному запаздыванию и доплеровскому сдвигу частоты.

Кроме того, в устройстве 3-3 из сигнала A последовательно вычисляются сигналы AH, AHA и (AHA)-1, которые поступают в блок 3-1, где запоминаются.

В блоке 3-1 для каждого выбранного азимутально-угломестного направления приема с использованием рассеянного цифрового сигнала s, поступившего от устройства 1-5, и сигналов AH и (AHA)-1, поступивших от блока 3-3, вычисляется и запоминается сигнал начального приближения комплексного частотно-временного изображения h ( 0 ) = ( A H A ) 1 A H s .

Полученный в блоке 3-1 сигнал h 0 начального приближения запоминается в блоке 3-2 и транслируется в устройство 3-3 для запоминания и инициализации очередной итерации с номером k=1.

В устройстве 3-3 с использованием сигнала частотно-временного изображения, полученного на предыдущей итерации, то есть h ( k 1 ) = h ( 0 ) при k=1, формируется вспомогательный матричный сигнал Л ( h ( 1 ) ) d i a g { | h z ( 1 ) | 1 / 2 } , где h z ( 1 ) - z-й элемент вектора h ( 1 ) , и взвешивающий сигнал [ A H A + λ Л ( h ( 1 ) ) ] 1 A H . Значение множителя Лагранжа λ выбирают исходя из уровня шумов в каналах приема. Взвешивающий сигнал [ A H A + λ Л ( h ( 1 ) ) ] 1 A H поступает в блок 3-1.

В блоке 3-1 с использованием сигнала [ A H A + λ Л ( h ( 1 ) ) ] 1 A H и запомненного рассеянного цифрового сигнала s синтезируется сигнал текущего приближения комплексного частотно-временного изображения h ( 1 ) = [ A H A + λ Л ( h ( 1 ) ) ] 1 A H s . Полученный сигнал h ( 1 ) поступает в блок 3-2.

В блоке 3-2 сигнал h ( 1 ) запоминается для использования на следующей итерации.

Кроме этого в блоке 3-2 энергия разности частотно-временных изображении | | h ( 1 ) h ( 0 ) | | 2 , полученных на текущей и предыдущей итерации, сравнивается с заранее установленным фиксированным порогом δ.

При невыполнении условия | | h ( 1 ) h ( 0 ) | | 2 δ сигнал h ( 1 ) поступает в устройство 3-3 для запоминания и инициализации очередной итерации синтеза частотно-временного изображения. После чего в устройстве 3-3, блоках 3-1 и 3-2 выполняется описанная ранее последовательность операций по формированию сигналов Л ( h ( k 1 ) ) , [ A H A + λ Л ( h ( k 1 ) ) ] 1 A H , h ( k ) = [ A H A + λ Л ( h ( k 1 ) ) ] 1 A H s , запоминанию сигнала h ( k ) и проверке выполнения условия | | h ( k ) h ( k 1 ) | | 2 δ .

При выполнении условия | | h ( 1 ) h ( 0 ) | | 2 δ на первой итерации или условия | | h ( k ) h ( k 1 ) | | 2 δ на итерации с номером k≥2 сигнал h ( k ) из блока 3-2 поступает в блок 4.

В блоке 4 восстанавливаются квадраты модулей элементов текущего частотно-временного изображения | h z ( k ) | 2 , по локальным максимумам которого определяется число рассеянных радиосигналов в выбранном азимутально-угломестном направлении, по параметрам которых - значению временной задержки, доплеровского сдвига каждого рассеянного радиосигнала и значению азимутально-угломестного направления приема рассеянных радиосигналов - выполняется обнаружение и пространственная локализация подвижных объектов.

Обнаружение и определение пространственных координат подвижных объектов осуществляется известными способами, например [2].

Результаты обнаружения и пространственной локализации воздушных объектов отображаются для повышения информативности.

Таким образом, учитывая, что сигнал Л ( h ( k 1 ) ) выражается через полученный на предыдущей итерации сигнал частотно-временного изображения h ( k 1 ) , сигнал текущего комплексного частотно-временного изображения h ( k ) также зависит от предыдущего решения h ( k 1 ) . В связи с этим предложенный способ реализует адаптацию с обратной связью по полезному сигналу в каждом ℓ-м азимутально-угломестном направлении поиска объектов, что повышает чувствительность и динамический диапазон формирования изображения. Кроме того, учитывая, что сигнал Л ( h ( k 1 ) ) зависит от модуля в степени (-1) частотно-временного изображения h ( k 1 ) , при формировании сигнала Л ( h ( k 1 ) ) и, следовательно, сигнала h ( k ) , компоненты полезного сигнала усиливаются. Эта особенность, характерная для нелинейной обработки, лежит в основе повышения разрешающей способности формирования изображения радиосигналов, рассеянных объектами.

Из приведенного описания следует, что устройство, реализующее предложенный способ, обеспечивает повышение эффективности обнаружения и пространственной локализации широко класса объектов за счет применения новых операций адаптивной и нелинейной обработки радиосигналов в каждом ℓ-м азимутально-угломестном направлении поиска объектов.

Таким образом, за счет применения в каждом азимутально-угломестном направлении поиска объектов вместо классической двумерной взаимной корреляции операций адаптивной обработки с обратной связью по полезному радиосигналу и операций нелинейной обработки радиосигналов удается решить поставленную задачу с достижением указанного технического результата.

Источники информации

1. US, патент, 6703968 B2, кл. G01S 13/87, 2004 г.

2. RU, патент, 2444755, кл. G01S 13/02, 2012 г.

3. RU, патент, 2190236, кл. G01S 5/04, 2002 г.

4. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. М.: Радио и связь. 2003 г.

Похожие патенты RU2529483C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Шевченко Валерий Николаевич
RU2524401C1
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО ОБНАРУЖЕНИЯ ПОДВИЖНЫХ ОБЪЕКТОВ 2014
  • Чернятьев Юрий Николаевич
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2546329C1
СПОСОБ ПОИСКА МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Чернятьев Юрий Николаевич
  • Шевченко Валерий Николаевич
RU2546331C2
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО ПОИСКА МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ 2014
  • Чернятьев Юрий Николаевич
  • Виноградов Сергей Николаевич
  • Шевченко Валерий Николаевич
RU2557251C1
СПОСОБ СКРЫТНОЙ РАДИОЛОКАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ 2014
  • Перетятько Александр Александрович
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2557250C1
СПОСОБ ОБНАРУЖЕНИЯ МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Перетятько Александр Александрович
  • Виноградов Сергей Николаевич
  • Пархоменко Николай Григорьевич
  • Шевченко Валерий Николаевич
RU2524399C1
СПОСОБ СКРЫТНОГО ОБНАРУЖЕНИЯ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Перетятько Александр Александрович
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2521608C1
СПОСОБ СКРЫТНОГО ОБНАРУЖЕНИЯ РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2770176C1
СПОСОБ ДИСТАНЦИОННОГО МОНИТОРИНГА РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Шевченко Валерий Николаевич
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
RU2723432C2
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ И СОПРОВОЖДЕНИЯ РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Шевченко Валерий Николаевич
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
RU2716006C2

Реферат патента 2014 года СПОСОБ СКРЫТНОЙ РАДИОЛОКАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат - повышение эффективности обнаружения и пространственной локализации широкого класса объектов. Указанный результат достигается за счет применения новых операций адаптивной и нелинейной обработки радиосигналов, адаптивно выделенных на множестве азимутально-угломестных направлений возможных положений контролируемых объектов. 1 ил.

Формула изобретения RU 2 529 483 C1

Способ скрытной радиолокации подвижных объектов, заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевой радиосигнал, включающий прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые объединяют в матричный цифровой сигнал S={s1,…,sn,...,sN} и запоминают, из матричного цифрового сигнала S формируют сигнал пространственной корреляционной матрицы R, сигнал корреляционной матрицы R преобразуют в сигналы оптимальных весовых векторов для формирования прямого w=R-1v и рассеянных w=R-1v радиосигналов, где v - вектор наведения, определяемый азимутально-угломестным направлением приема радиосигнала, длиной волны и геометрией решетки, ℓ - номер азимутально-угломестного направления приема рассеянного радиосигнала, преобразуют матричный цифровой сигнал S в прямой s=wHS и рассеянные s = w H S цифровые сигналы, где (·)H - символ эрмитова сопряжения, которые совместно со значением выбранного азимутально-угломестного направления приема рассеянного радиосигнала запоминают, отличающийся тем, что преобразуют прямой цифровой сигнал s в матричный сигнал комплексной фазирующей функции A, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, запоминают матричный сигнал A, для каждого выбранного азимутально-угломестного направления приема преобразуют рассеянный цифровой сигнал s в сигнал комплексного частотно-временного изображения h ( 0 ) = ( A H A ) 1 A H s , где AH - матрица, эрмитово сопряженная с A, сигнал h ( 0 ) запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал Λ ( h ( k 1 ) ) d i a g { | h z ( k 1 ) | 1 / 2 } , h z ( k 1 ) - z-й элемент вектора h ( k 1 ) , k=1,2,… - номер итерации, и сигнал очередного приближения частотно-временного изображения h ( k ) = [ A H A + λ Λ ( h ( k 1 ) ) ] 1 A H s , где λ - множитель Лагранжа, до тех пор, пока энергия разности текущего и запомненного предыдущего частотно-временных изображений не достигнет заданного малого значения, после чего по локальным максимумам квадрата модуля элементов текущего частотно-временного изображения | h z ( k ) | 2 определяют число рассеянных радиосигналов в выбранном азимутально-угломестном направлении, по параметрам которых - значению временной задержки, доплеровского сдвига каждого рассеянного радиосигнала и значению азимутально-угломестного направления приема рассеянных радиосигналов - выполняют обнаружение и пространственную локализацию подвижных объектов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529483C1

СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ВОЗДУШНЫХ ОБЪЕКТОВ 2010
  • Пархоменко Николай Григорьевич
  • Вертоградов Геннадий Георгиевич
  • Шевченко Валерий Николаевич
RU2444755C1
МЕТКА РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТА И СИСТЕМА И СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ И КОНТРОЛЯ ОБЪЕКТОВ 2007
  • Саблин Вячеслав Николаевич
  • Бурмистров Евгений Александрович
  • Костюков Евгений Валентинович
  • Парамонов Игорь Васильевич
RU2371734C2
СПОСОБ ЛОКАЛИЗАЦИИ ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ДЕКАМЕТРОВОГО ДИАПАЗОНА 2009
  • Сивоконь Владимир Павлович
RU2408895C2
Сборная железобетонная крепь для горных выработок 1957
  • Журов Э.М.
  • Хмельницкий Л.Я.
SU112446A1
JP 6213943 A, 05.08.1994
US 5923285 A1, 29.03.2006
WO 2003079041 A3, 25.09.2003
EP 1471364 A2, 27.10.2004

RU 2 529 483 C1

Авторы

Чернятьев Юрий Николаевич

Шевченко Валерий Николаевич

Даты

2014-09-27Публикация

2013-05-13Подача