Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.
Достижение высокой эффективности обнаружения, локализации и идентификации наземных, морских и воздушных объектов ограничивается существенной априорной неопределенностью размеров, ориентации в пространстве, отражающих свойств и параметров движения объектов, а также несовершенством известных способов обнаружения и слежения за подвижными объектами.
Технология скрытного обнаружения и слежения за подвижными объектами, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения в диапазонах коротких, метровых, дециметровых и сантиметровых волн: широковещательные (коммерческое FM-радиовещание, телевидение высокой четкости), информационные (связь) и измерительные (управление, навигация), пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить скрытность и эффективность обнаружения, пространственной локализации и идентификации широкого класса подвижных объектов.
Известен способ скрытной радиолокации подвижных объектов [1], заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевой радиосигнал, включающий прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, из цифровых сигналов формируют прямой и сжатые рассеянные сигналы, сравнивают прямой и рассеянные сигналы и определяют временные задержки, доплеровские сдвиги и направления прихода рассеянных сигналов, по временным задержкам, доплеровским сдвигам и направлениям прихода выполняют обнаружение и пространственную локализацию воздушных объектов.
Данный способ не содержит операций подавления когерентной помехи в виде прямого радиосигнала передатчика и, как следствие, обеспечивает эффективное обнаружение только очень крупных близко расположенных объектов.
Более эффективным является способ скрытной радиолокации подвижных объектов [2], свободный от этого недостатка и выбранный в качестве прототипа. Согласно этому способу:
используют прямые и рассеянные подвижными объектами радиосигналы, излучаемые широкополосными передатчиками радиоэлектронных систем различного назначения;
принимают решеткой из N антенн сигналы многолучевого электромагнитного поля прямого и рассеянных радиосигналов;
синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы;
цифровые сигналы преобразуют в прямой s и рассеянные sl сигналы для выбранных азимутально-угломестных направлений приема l, которые совместно со значением азимутально-угломестного направления приема запоминают;
для каждого выбранного азимутально-угломестного направления приема формируют и запоминают зависящую от временного сдвига комплексную взаимно корреляционную функцию (ВКФ) между прямым s и sl рассеянным сигналами;
определяют максимальное значение модуля комплексной ВКФ и фиксируют соответствующее этому максимуму значение комплексной ВКФ;
вычисляют разностный рассеянный цифровой сигнал;
формируют зависящую от временного и частотного сдвигов комплексную двумерную взаимно корреляционную функцию (ДВКФ) между разностным рассеянным цифровым сигналом и цифровым прямым сигналом;
по модулю комплексной ДВКФ определяют число сжатых рассеянных сигналов, а также значения задержки по времени и абсолютного доплеровского сдвига каждого сжатого рассеянного сигнала;
по значениям задержки и абсолютного доплеровского сдвига и азимутально-угломестного направления приема сжатых рассеянных сигналов обнаруживают и определяют пространственные координаты объекта.
Способ-прототип благодаря наличию операций адаптивной пространственной фильтрации и операций компенсации когерентной помехи в виде мощного прямого радиосигнала передатчика подсвета обеспечивает обнаружение более широкого класса объектов.
Однако данный способ-прототип содержит операции формирования классической двумерной взаимной корреляционной функции, которая, кроме основного лепестка, ограничивающего разрешающую способность и точность пространственной локализации целей, содержит высокие боковые лепестки, ограничивающие чувствительность обнаружения вследствие маскирования сигналов далеких и слабо рассеивающих целей.
Таким образом, недостатком способа-прототипа является низкая эффективность обнаружения и пространственной локализации широкого класса объектов.
Техническим результатом изобретения является повышение эффективности обнаружения и пространственной локализации широкого класса объектов.
Повышение эффективности обнаружения и пространственной локализации широкого класса объектов достигается за счет применения новых операций нелинейной итерационной обработки радиосигналов.
Технический результат достигается тем, что в способе скрытной радиолокации подвижных объектов, заключающемся в том, что используют прямые и рассеянные подвижными объектами радиосигналы, излучаемые широкополосными передатчиками радиоэлектронных систем различного назначения, принимают решеткой из N антенн сигналы многолучевого электромагнитного поля прямого и рассеянных радиосигналов, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, цифровые сигналы преобразуют в прямой s и рассеянные sl сигналы для выбранных азимутально-угломестных направлений приема l, которые совместно со значением азимутально-угломестного направления приема запоминают, согласно изобретению, для каждого ожидаемого доплеровского сдвига частоты ω преобразуют прямой сигнал s в матричный сигнал комплексной фазирующей функции Aω, включающий гипотетические сигналы, рассеиваемые в ожидаемой области задержек каждым потенциальным подвижным и стационарным объектом, матричный сигнал Aω запоминают, для каждого выбранного азимутально-угломестного направления приема и каждого ожидаемого значения доплеровского сдвига частоты преобразуют рассеянный сигнал sl в сигнал элемента комплексного частотно-временного изображения
Операции способа поясняются чертежом.
Устройство, в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1, систему моделирования и выбора радиопередатчиков (РПД) 2, вычислительную систему 3 и блок управления и индикации 4.
В свою очередь система приема и предварительной обработки 1 включает антенную решетку 1-1, тракт поиска источников подсвета, включающий преобразователь частоты 1-2, АЦП 1-3 и устройство обнаружения 1-4, а также тракт приема прямых и рассеянных сигналов, включающий преобразователь частоты 1-7, АЦП 1-6 и устройство адаптивной пространственной фильтрации 1-5.
Вычислительная система 3 включает блок синтеза частотно-временного изображения 3-1, блок сравнения 3-2, устройство формирования вспомогательного и взвешивающего сигнала 3-3 и блок формирования сигнала фазирующей функции 3-4. При этом система 2 соединена с входом блока 4, а также имеет интерфейс для соединения с внешней базой РПД. Кроме того, блок 4 имеет выход, предназначенный для подключения к внешним системам.
Подсистема 1 является аналогово-цифровым устройством и предназначена для поиска передатчиков подсвета объектов, излучающих радиосигналы с расширенным спектром, а также для адаптивной пространственной фильтрации полезных прямых и рассеянных радиосигналов.
Антенная решетка 1-1 состоит из N антенн с номерами
Преобразователи частоты 1-2 и 1-7 являются N-канальными, выполнены с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов.
АЦП 1-3 и 1-6 также являются N-канальными и синхронизированы сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан). Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, как, например, в КВ диапазоне, то вместо преобразователей частоты 1-2 и 1-7 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме этого, преобразователи частоты 1-2 и 1-7 обеспечивают подключение одной из антенн вместо всех антенн решетки для периодической калибровки приемных каналов по внешнему источнику сигнала. Возможна калибровка с использованием внутреннего генератора, выход которого также подключается вместо всех антенн для периодической калибровки каналов. С целью упрощения внутренний генератор не показан.
Устройство обнаружения 1-4 и устройство адаптивной пространственной фильтрации 1-5 представляют собой вычислительные устройства.
Подсистема 2 является вычислительным устройством и предназначена для идентификации, отбора и периодического обновления передатчиков радиосигналов с расширенным спектром, используемых для подсвета заданной области воздушного пространства.
Вычислительная система 3 предназначена для формирования сигнала фазирующей функции (блок 3-4), формирования вспомогательного и взвешивающего сигнала (устройство 3-3), сравнения числа итераций с заданным порогом (блок 3-2) и синтеза частотно-временного изображения рассеянных объектами радиосигналов (блок 3-1).
Устройство работает следующим образом.
В системе 2 на основе данных внешней базы радиопередатчиков, а также данных об обнаруженных радиопередатчиках подсвета, поступающих от устройства 1-4, с использованием программных средств моделирования идентифицируется, выбирается и периодически обновляется совокупность передатчиков, излучающих радиосигналы с расширенным спектром. При моделировании оцениваются возможные зоны покрытия, вероятности обнаружения и достижимые точности локализации и идентификации воздушных объектов различного класса, которые могут быть обеспечены при различных вариантах размещения передатчиков относительно станции обнаружения-пеленгования.
Параметры выбранного множества передатчиков (номер, несущая частота, ширина спектра, форма, мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно точки приема) запоминаются в подсистеме 2, поступают в блок 4, а также используются для настройки преобразователей 1-2 и 1-7. С целью упрощения цепи управления преобразователем не показаны.
По сигналам системы 2 преобразователь частоты 1-2 начинает перестраиваться с заданным темпом в заданном диапазоне частот поиска радиосигналов, например, в диапазоне 10-1000 МГц. При этом тракт поиска осуществляет поиск передатчиков подсвета, излучающих радиосигналы с расширенным спектром, на частотах дискретной сетки частот поиска. При этом принятый каждой антенной с номером n антенной решетки 1-1 зависящий от времени t радиосигнал sn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-2. Сформированные в преобразователе 1-2 радиосигналы sn(t) преобразуются с помощью АЦП 1-3 в цифровые сигналы, которые поступают в устройство обнаружения 1-4, в котором на каждой частоте дискретной сетки частот поиска осуществляется обнаружение передатчиков подсвета. Функционирование устройства обнаружения 1-4 основано на широко известных способах радиоконтроля, например, [3].
Одновременно по сигналам системы 2 преобразователь частоты 1-7 перестраивается на заданную частоту приема. Тракт приема синхронно принимает на частоте приема многолучевые радиосигналы, включающие прямой радиосигнал выбранного передатчика с расширенным спектром и рассеянные объектами радиосигналы этого передатчика.
Принятый каждой антенной с номером n решетки 1-1 зависящий от времени t радиосигнал sn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-7.
Сформированные в преобразователе 1-7 радиосигналы sn(t) синхронно преобразуются с помощью АЦП 1-6 в цифровые сигналы
Цифровые сигналы отдельных антенн sn поступают в устройство 1-5, где объединяются в матричный цифровой сигнал
Кроме того, в устройстве 1-5 выполняются следующие действия:
- из матричного цифрового сигнала S формируется сигнал пространственной корреляционной матрицы R размером N×N;
- сигнал корреляционной матрицы R преобразуется в сигналы оптимальных весовых векторов для формирования прямого
- матричный цифровой сигнал S преобразуется в прямой
Физически описанные операции адаптивной пространственной фильтрации обеспечивают одновременный направленный прием с заданных направлений полезного прямого сигнала выбранного передатчика подсвета и полезного рассеянного сигнала с одновременным подавлением широкого класса помех, приходящих с других направлений. Отметим, что технически реализуемая глубина подавления помехи достигает величины 40 дБ [4].
Это обеспечивает выигрыш в чувствительности при формировании слабых рассеянных сигналов на последующих этапах обработки.
Сформированные в устройстве 1-5 рассеянные сигналы sl совместно со значением выбранного азимутально-угломестного направления их приема поступают в блок 3-1, а прямой сигнал s поступает в блок 3-4, где запоминаются.
После этого в блоке 3-4 для каждого ожидаемого значения доплеровского сдвига частоты ω прямой сигнал s преобразуется в матричный сигнал комплексной фазирующей функции Аω, включающий гипотетические сигналы, рассеиваемые в ожидаемой области задержек каждым потенциальным подвижным и стационарным объектом. Матричный сигнал Аω поступает в устройство 3-3, где также запоминается.
Преобразование прямого сигнала s в матричный сигнал Аω осуществляется по следующей формуле:
где
- матрицы доплеровских сдвигов, ω=0,±1, …, ±Ω, (2Ω+1) - размер координатной сетки по доплеровскому сдвигу. Значения доплеровского сдвига частоты пробегают дискретный ряд значений ω/(ITs).
Таким образом, столбцы матрицы Аω представляют собой задержанные по времени и сдвинутые по частоте доплеровского сдвига версии прямого сигнала s, а размер этой матрицы I×2Q, определяется числом отсчетов в разведываемом сигнале (длительностью интервала наблюдения) и размерами координатной сетки по временному запаздыванию.
Кроме того, в устройстве 3-3 из сигнала Аω последовательно вычисляются сигналы
В блоке 3-1 для каждого выбранного азимутально-угломестного направления приема l и каждого ожидаемого значения доплеровского сдвига частоты ω рассеянный сигнал sl с использованием сигналов
Полученный в блоке 3-1 сигнал элемента изображения
В устройстве 3-3 с использованием сигнала элемента изображения, полученного на предыдущей итерации, то есть
В блоке 3-1 с использованием сигнала
В блоке 3-2 сигнал
При этом сигнал
При превышении номером текущей итерации заданного порога в блоке 3-1 сформированные сигналы элементов изображения
Матричный сигнал результирующего комплексного частотно-временного изображения Hl поступает в блок 4.
В блоке 4 вычисляются квадраты модулей компонент матричного сигнала результирующего комплексного частотно-временного изображения
Обнаружение и определение пространственных координат подвижных объектов осуществляется известными способами, например, [2].
Результаты обнаружения и пространственной локализации воздушных объектов отображаются для повышения информативности.
Таким образом, учитывая, что вспомогательный матричный сигнал
Из приведенного описания следует, что устройство, реализующее предложенный способ, обеспечивает повышение эффективности обнаружения и пространственной локализации широкого класса объектов за счет применения новых операций нелинейного формирования сигналов элементов изображения
Таким образом, за счет применения вместо классической двумерной взаимной корреляции операций нелинейной итерационной обработки радиосигналов удается решить поставленную задачу с достижением указанного технического результата.
Источники информации
1. US, патент, 6703968 B2, кл. G01S 13/87, 2004 г.
2. RU, патент, 2444755, кл. G01S 13/02, 2012 г.
3. RU, патент, 2190236, кл. G01S 5/04, 2002 г.
4. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. М.: Радио и связь, 2003 г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО ОБНАРУЖЕНИЯ ПОДВИЖНЫХ ОБЪЕКТОВ | 2014 |
|
RU2546329C1 |
СПОСОБ СКРЫТНОГО ОБНАРУЖЕНИЯ РАДИОМОЛЧАЩИХ ОБЪЕКТОВ | 2018 |
|
RU2770176C1 |
СПОСОБ СКРЫТНОЙ РАДИОЛОКАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ | 2013 |
|
RU2529483C1 |
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ | 2013 |
|
RU2524401C1 |
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО РАДИОКОНТРОЛЯ ПОДВИЖНЫХ ОБЪЕКТОВ | 2014 |
|
RU2546330C1 |
СПОСОБ ДИСТАНЦИОННОГО МОНИТОРИНГА РАДИОМОЛЧАЩИХ ОБЪЕКТОВ | 2018 |
|
RU2723432C2 |
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО ПОИСКА МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ | 2014 |
|
RU2557251C1 |
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ И СОПРОВОЖДЕНИЯ РАДИОМОЛЧАЩИХ ОБЪЕКТОВ | 2018 |
|
RU2716006C2 |
СПОСОБ ПОИСКА МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ | 2013 |
|
RU2546331C2 |
СПОСОБ СКРЫТНОГО МОНИТОРИНГА РАДИОМОЛЧАЩИХ ОБЪЕКТОВ | 2018 |
|
RU2724923C2 |
Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения является повышение эффективности обнаружения и пространственной локализации широкого класса объектов. Повышение эффективности обнаружения и пространственной локализации широкого класса объектов достигается за счет применения новых операций нелинейной итерационной обработки радиосигналов. 1 ил.
Способ скрытной радиолокации подвижных объектов, заключающийся в том, что используют прямые и рассеянные подвижными объектами радиосигналы, излучаемые широкополосными передатчиками радиоэлектронных систем различного назначения, принимают решеткой из N антенн сигналы многолучевого электромагнитного поля прямого и рассеянных радиосигналов, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, цифровые сигналы преобразуют в прямой s и рассеянные sl сигналы для выбранных азимутально-угломестных направлений приема l, которые совместно со значением азимутально-угломестного направления приема запоминают, отличающийся тем, что для каждого ожидаемого доплеровского сдвига частоты ω преобразуют прямой сигнал s в матричный сигнал комплексной фазирующей функции Aω, включающий гипотетические сигналы, рассеиваемые в ожидаемой области задержек каждым потенциальным подвижным и стационарным объектом, матричный сигнал Аω запоминают, для каждого выбранного азимутально-угломестного направления приема и каждого ожидаемого значения доплеровского сдвига частоты преобразуют рассеянный сигнал sl в сигнал элемента комплексного частотно-временного изображения , где - матрица, эрмитово сопряженная с Аω, сигнал запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал где - z-я компонента вектора элемента изображения k=1, 2, … - номер итерации, и сигнал очередного приближения элемента комплексного частотно-временного изображения , где λ - множитель Лагранжа, до тех пор, пока номер текущей итерации не превысит заданный порог, объединяют сформированные сигналы элементов изображения в матричный сигнал результирующего комплексного частотно-временного изображения Hl, после чего по локальным максимумам квадрата модуля компонент матричного сигнала результирующего изображения , где Hlωq - ωq-я компонента матрицы результирующего изображения Hl, определяют число рассеянных радиосигналов в выбранном азимутально-угломестном направлении, по параметрам которых - значениям временной задержки, доплеровского сдвига частоты каждого рассеянного радиосигнала и азимутально-угломестного направления приема рассеянных радиосигналов - выполняют обнаружение и пространственную локализацию подвижных объектов.
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ВОЗДУШНЫХ ОБЪЕКТОВ | 2010 |
|
RU2444755C1 |
МЕТКА РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТА И СИСТЕМА И СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ И КОНТРОЛЯ ОБЪЕКТОВ | 2007 |
|
RU2371734C2 |
СПОСОБ ЛОКАЛИЗАЦИИ ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ДЕКАМЕТРОВОГО ДИАПАЗОНА | 2009 |
|
RU2408895C2 |
Сборная железобетонная крепь для горных выработок | 1957 |
|
SU112446A1 |
JP 6213943 A, 05.08.1994 | |||
US 5923285 A1, 29.03.2006 | |||
WO 2003079041 A3, 25.09.2003 | |||
EP 1471364 A2, 27.10.2004 |
Авторы
Даты
2015-07-20—Публикация
2014-02-14—Подача