Изобретение относится к области контроля качества стальных изделий, предназначенных для эксплуатации в агрессивных средах, оказывающих коррозионное воздействие на металлы.
Одним из наиболее повреждаемых в результате коррозионного воздействия объектов является оборудование, подвергающееся воздействию агрессивных сред, составной частью которых является водород (свободный, несвязанный) и др. агрессивные компоненты. К такому оборудованию относятся трубопроводы для транспортировки нефти и газа, в том числе магистральные, а также внутрипромысловые, резервуары, скважинное и др. виды оборудования (в том числе для химической и нефтеперерабатывающей промышленности).
Одним из главных видов коррозионного разрушения такого оборудования является коррозионное растрескивание под напряжением (КРН, стресс-коррозия).
Применительно к стальным магистральным газопроводам важными стадиями данного вида разрушения являются:
- возникновение очагов локальной коррозии на поверхности трубы при ее контакте с грунтовым электролитом по классическому электрохимическому механизму с последующим зарождением стресс-коррозионных трещин,
- развитие трещин КРН по механизму анодного растворения металла в устье трещины или водородного охрупчивания (из-за поступления в сталь водорода из коррозионной среды), которое на определенной стадии может получить аномальное ускорение и привести к сквозному протяженному разрушению трубопровода.
Данные представления о процессе КРН недостаточно полно учитывают роль напряженно-деформированного состояния, а также процессов пластической микродеформации поверхностных, а затем и более глубоких слоев металла, приводящие к исчерпанию запаса пластичности отдельных участков, к возникновению и развитию трещин.
Так, основным условием протекания первой стадии КРН - зарождения трещин, является наличие на поверхности труб аномалий, вызывающих неоднородное распределение напряжений в сечении труб: разброс механических свойств металла, разнотолщинность листовой заготовки, вмятины, смещение кромок в зоне сварного шва и т.д. Другие аномальные участки, которые формируются на поверхности в результате контакта имеющихся на ней структурных элементов металла, проявляющих коррозионную активность в водных средах (неметаллических включений, структурной и сегрегационной неоднородности), с грунтовым электролитом, представляют собой очаги коррозии.
В процессе длительного пребывания под нагрузкой (при эксплуатации трубопровода) металла с аномальными участками на поверхности происходит неизбежное выравнивание поля напряжений, реализующееся путем медленно протекающей пластической деформации металла в местах аномалий. Следствием исчерпания запаса пластичности металла в отдельных микрообъемах становится зарождение микротрещин.
Условиями развития второй стадии КРН, кроме наличия на поверхности металла зародышевых трещин, являются доступ коррозионной среды к поверхности металла, а также выделение водорода из коррозионной среды в результате химических и электрохимических процессов. Эта стадия предполагает последовательное чередование двух процессов: локального анодного растворения (ЛАР) и водородного охрупчивания (ВО) при том, что оба процесса подготавливаются и сопровождаются активно идущей пластической деформацией. Процесс микропластических деформаций слоя интенсифицируется под действием водорода. Вопреки распространенному мнению о том, что в водородосодержащих средах происходит процесс охрупчивания, в начальный период при малых концентрациях водород может способствовать микропластическим деформациям. Но эти микропластические деформации, так же как и процессы охрупчивания, приводят к исчерпанию запаса пластичности и к ускоренному развитию процесса КРН.
Представленные модельные представления о процессе КРН свидетельствуют о существенной роли в его развитии склонности стали к неравномерности микродеформации при контакте со средой и о целесообразности ее определения для оценки стойкости стали к КРН.
Известен способ оценки склонности трубных марок сталей к стресс-коррозии, включающий воздействие на испытуемый образец водородсодержащей коррозионной среды, при том, что предварительно на испытуемый образец алмазом наносят отпечатки, прикладывают нагрузку в пределах 0,85-0,95 от предела текучести стали, определяют коэффициент неравномерности поверхностной микродеформации (Кн) по формуле:
где ∑разб - общая сумма разброса деформации участков между отпечатками,
Δli - относительное удлинение между отпечатками,
Недостаток известного способа заключается в необходимости проведения большого количества измерений, проводимых ручным инструментом, в ходе которых возможно появление погрешности. Кроме того, способ позволяет оценивать неравномерность поверхностной микродеформации только в локальных участках, тогда как реальные стали характеризуются существенной неоднородностью микроструктуры.
Наиболее близким аналогом заявленного изобретения является способ оценки стойкости стали против коррозионного растрескивания под напряжением, заключающийся в том, что от изделий отбирают пробы, изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию агрессивной среды. Образец выдерживают в агрессивной среде под постоянной нагрузкой в течение 720 часов. Уровень приложенного напряжения находится в интервале от 0,6 до 0,95 от предела текучести стали, в зависимости от требований нормативной документации. Критерием стойкости стали может быть максимальное значение приложенного напряжения, при котором образец не разрушился в течение 720 часов, или сам факт отсутствия разрушения при определенной фиксированной нагрузке (чаще всего 0,8 от предела текучести стали), также после выдержки в агрессивной среде в течение 720 часов (Метод по NACE Standard TM 0198-98. Standard Test Method Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, p.1 - 16 - прототип).
Недостатком способа является невысокая чувствительность, большая длительность испытаний и невозможность ранжировать близкие по механическим характеристикам стали, содержащие разные по эффективности ловушки водорода, которые во многом определяют стойкость стали против стресс-коррозии. Кроме того, при указанных условиях испытаний для ряда сталей могут не развиться процессы микропластической деформации, что также снижает достоверность оценки стойкости против КРН.
Задача, на решение которой направлено изобретение, заключается в создании способа контроля стойкости против коррозионного растрескивания под напряжением сталей, предназначенных для труб магистральных газопроводов и других видов оборудования, эксплуатирующегося в условиях, приводящих к поступлению в металл водорода.
Техническим результатом настоящего изобретения является повышение информативности и достоверности при снижении длительности проведения контроля на стойкость против коррозионного растрескивания с учетом склонности стали к неоднородности пластической деформации, а также возможность ранжирования сталей по классам стойкости против коррозионного растрескивания под напряжением.
Указанный технический результат достигается тем, что в способе контроля стойкости трубных сталей против коррозионного растрескивания под напряжением, заключающемся в том, что изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию испытательной среды, согласно изобретению образцы подвергают предварительной деформации растяжением со степенями 1-10%, затем прикладывают нагрузку, величина которой составляет 50-80% от предела текучести, и помещают образцы в испытательную среду со значением pH в пределах 2,5-5 на 180-360 часов, после чего образцы разрушают на воздухе методом растяжения на разрывной машине, а о стойкости к коррозионному растрескиванию под напряжением судят по разнице механических свойств сталей в исходном состоянии и после испытаний. О стойкости к коррозионному растрескиванию под напряжением судят по степени изменения пластичности, которую вычисляют по формуле:
где -
при этом стали, для которых значение ξ составляет от 0 до +10%; относят к 1-му классу стойкости,
стали, для которых значение ξ составляет более +10% или от минус 10% до 0%, относят ко 2-му классу стойкости,
стали, для которых значение ξ составляет менее минус 10%; относят к 3-му классу стойкости.
Сущность заявленного изобретения заключается в том, что проводится имитация двух процессов, присущих эксплуатации магистральных газопроводов: локального анодного растворения (ЛАР) и водородного охрупчивания (ВО), при том, что оба процесса подготавливаются и сопровождаются активно идущей пластической деформацией. Участками локализации микропластических деформаций могут быть несовершенства кристаллической решетки, металлургическая неоднородность стали.
Предварительная деформация растяжением с общей степенью 1-10% необходима для интенсификации пластического течения в наиболее напряженных участках металла еще до поступления в металл водорода, что характерно для начала первой стадии КРН. При степени деформации менее 1% пластическая деформация будет реализована неравномерно по объему только в отдельных участках металла. Увеличение степени деформации свыше 10% превысит реально возможные степени деформации, которые могут возникать в трубопроводе до поступления в сталь водорода.
Приложение нагрузки, величина которой составляет 50-80% от предела текучести, необходимо для создания напряженно-деформированного состояния, характерного для стадий зарождения и развития трещин КРН. Именно исходя из требований обеспечения нагрузок в трубопроводе не более 80% от предела текучести выбирается сталь для трубопровода, рассчитываются его диаметр и толщина стенки трубы для конкретных условий эксплуатации. Нагрузка менее 50% от предела текучести не обеспечивает средний уровень напряжений, характерных для условий эксплуатации трубопровода.
Выдержка образцов в испытательной среде со значением pH в пределах 2,5-5 в течение 180-360 часов обеспечивает поступление в сталь водорода при испытаниях, достаточное для создания напряженно-деформированного состояния в участках металла со структурными элементами, являющимися ловушками для водорода. При значении pH более 5, при данной продолжительности испытаний, а также при продолжительности испытаний менее 180 часов, развитие процессов деградации стали, связанных с поступлением в сталь водорода и развития микропластических деформаций, будет недостаточным для оценки стойкости стали к КРН. При значении pH менее 2,5 механизмы разрушения стали изменяются, становятся характерными для сред с повышенным содержанием сероводорода. При этом решающую роль в разрушении, которое начинает происходить по механизму водородного растрескивания, начинают играть другие структурные элементы, чем в процессах КРН, что снижает достоверность получаемых результатов.
Заявленные отличительные признаки (параметр «изменение относительного удлинения») и критерии ранжирования результатов определены на основе многочисленных экспериментов эмпирическим путем.
Примеры реализации изобретения
Из трубных сталей марок, К60-К65, химический состав которых приведен в таблице 1, изготавливали цилиндрические образцы размером 90×5 мм, по 7 штук на каждый вариант стали. По одному образцу от варианта испытывали сразу для определения относительного удлинения в исходном состоянии. Каждый из оставшихся образцов подвергали предварительной деформации растяжением от 1 до 5% соответственно. Далее образцы помещались в закрытую ячейку с раствором 5% NaCl, 0,4% уксусной кислоты, pH 2,9. На образцы подавалась нагрузка 80% от предела текучести. Испытания проводились 240 часов. Затем образцы разрушали на воздухе методом растяжения и определяли относительное удлинение для каждого образца одного варианта и сравнивали со значением этого параметра в исходном состоянии. О стойкости стали к КРН судили по наибольшему изменению относительного удлинения.Также проводили испытания образцов по прототипу (Метод по NACE Standard ТМ 0198-98. Standard Test Method Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, p.1-16). Для этого брали по одному цилиндрическому образцу от каждого варианта и испытывали под нагрузкой 80% от предела текучести в течение 720 часов в агрессивной среде NACE. Критерием стойкости стали к КРН является факт разрушения образца в процессе выдержки. Результаты испытаний образцов по разработанной методике и прототипу приведены в таблице 2. Испытания проводили на трубных сталях марок К60-К65, химический состав которых приведен в таблице 1.
Установлено, что стали составов 3 и 4 имеют принципиально отличающийся от составов 1 и 2 характер изменения свойств в процессе наводороживания. В первом случае наблюдается увеличение, а во втором снижение относительного удлинения, что может быть связано с накоплением в металле неблагоприятных форм присутствия водорода. Однако, как показано выше, и снижение и увеличение значения относительного удлинения после испытаний являются неблагоприятными факторам для развития КРН.
По степени изменения относительного удлинения наиболее высокую стойкость показала сталь К65 состава 4 - класс 1, наиболее низкую - сталь К60 состава 1 - класс 3, стали составов 2 и 3 показали промежуточный класс стойкости - класс 2.
Результаты испытаний, проведенных по способу-прототипу, частично, коррелируют с результатами по предлагаемой методике. Образец стали №1 разрушился при испытаниях по прототипу и показал 3 класс стойкости по разработанной методике. Образцы сталей №2-4 не разрушились при испытаниях по прототипу, однако по разработанной методике показали разные классы стойкости. Разработанная методика позволяет четче ранжировать стали по стойкости к КРН.
Таким образом, изобретение обеспечивает повышение информативности и достоверности при снижении длительности проведения контроля на стойкость против коррозионного растрескивания с учетом склонности стали к неоднородности пластической деформации, а также возможность ранжирования сталей по классам стойкости против коррозионного растрескивания под напряжением.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНТРОЛЯ СТОЙКОСТИ ТРУБНЫХ СТАЛЕЙ ПРОТИВ КОРРОЗИОННОГО РАСТРЕСКИВАНИЯ ПОД НАПРЯЖЕНИЕМ | 2012 |
|
RU2515174C1 |
Усовершенствованный способ циклических испытаний полнотолщинных образцов труб магистральных трубопроводов на коррозионное растрескивание под напряжением | 2023 |
|
RU2820157C1 |
СПОСОБ ОЦЕНКИ СКЛОННОСТИ ТРУБНЫХ МАРОК СТАЛЕЙ К СТРЕСС-КОРРОЗИИ | 2005 |
|
RU2299420C2 |
СПОСОБ ИСПЫТАНИЯ ТРУБНЫХ СТАЛЕЙ НА КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ ПОД НАПРЯЖЕНИЕМ | 2015 |
|
RU2582911C1 |
ТРУБНАЯ ЗАГОТОВКА ИЗ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ | 2009 |
|
RU2413030C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ | 2009 |
|
RU2409697C1 |
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И ЭЛЕКТРОСВАРНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ | 2018 |
|
RU2681588C1 |
МОДИФИКАТОР ДЛЯ ОБРАБОТКИ СТАЛИ | 2008 |
|
RU2364652C1 |
Способ производства горячекатаной высокопрочной коррозионно-стойкой стали | 2015 |
|
RU2615426C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ КОНЦЕНТРАЦИИ ОСТАТОЧНЫХ МИКРОНАПРЯЖЕНИЙ В МЕТАЛЛАХ И СПЛАВАХ | 2008 |
|
RU2390763C1 |
Изобретение относится к области контроля качества стальных изделий, предназначенных для эксплуатации в агрессивных средах, оказывающих коррозионное воздействие на металлы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию испытательной среды. Причем образцы подвергают предварительной деформации растяжением со степенями 1-10%. Затем прикладывают нагрузку, величина которой составляет 50-80% от предела текучести, и помещают образцы в испытательную среду со значением pH в пределах 2,5-5 на 180-360 часов. Далее образцы разрушают на воздухе методом растяжения на разрывной машине, а о стойкости к коррозионному растрескиванию под напряжением судят по разнице механических свойств сталей в исходном состоянии и после испытаний. При этом о стойкости к коррозионному растрескиванию под напряжением судят по степени изменения пластичности, которую вычисляют по формуле:
1. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением, заключающийся в том, что изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию испытательной среды, отличающийся тем, что образцы подвергают предварительной деформации растяжением со степенями 1-10%, затем прикладывают нагрузку, величина которой составляет 50-80% от предела текучести, и помещают образцы в испытательную среду со значением pH в пределах 2,5-5 на 180-360 часов, после чего образцы разрушают на воздухе методом растяжения, а о стойкости к коррозионному растрескиванию под напряжением судят по разнице механических свойств сталей в исходном состоянии и после испытаний.
2. Способ по п.1, отличающийся тем, что о стойкости к коррозионному растрескиванию под напряжением судят по степени изменения пластичности, которую вычисляют по формуле:
где -
при этом стали, для которых значение ξ составляет от 0 до +10%, относят к 1-му классу стойкости,
стали, для которых значение ξ составляет более +10% или от -10% до 0%, относят ко 2-му классу стойкости,
стали, для которых значение ξ составляет менее минус 10%, относят к 3-му классу стойкости.
NACE International Standard Test Method, Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys for Stress Corrosion Cracking in Sour Oilfield Service, NACE International, стр | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
СПОСОБ ИСПЫТАНИЯ ТРУБ НА КОРРОЗИОННУЮ СТОЙКОСТЬ | 2008 |
|
RU2368888C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СКЛОННОСТИ СТАЛЕЙ К ОБЩЕЙ КОРРОЗИИ | 2009 |
|
RU2410669C1 |
US 20110136239 A1 09.06.2011 |
Авторы
Даты
2014-10-10—Публикация
2013-06-03—Подача