Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы.
Одним из наиболее повреждаемых в результате коррозионного воздействия объектов является оборудование, подвергающееся воздействию агрессивных сред, составной частью которых являются ионы водорода (свободный, несвязанный) и др. агрессивные компоненты. К такому оборудованию относятся нефтепромысловые трубопроводы, резервуары, скважинное оборудование, трубы для добычи и транспортировки нефти и газа, элементы трубных колонн и др. виды оборудования (в том числе, для химической и нефтеперерабатывающей промышленности).
Главным видом коррозионного разрушения является коррозионное растрескивание под напряжением (КРН, стресс-коррозия).
В развитии стресс-коррозии важную роль играет формирование неблагоприятного структурного состояния стали. Однако механизмы деградации металла при эксплуатации различаются. Традиционным является представление, что причиной охрупчивания металла при эксплуатации являются исключительно процессы старения, приводящие к формированию карбидной сетки по границам зерен. С другой стороны, деградация металла может происходить из-за совмещения процессов старения с водородным охрупчиванием, приводящем к формированию карбогидридных сегрегации. Тем не менее четкая корреляция между состоянием стали и ее стойкостью против стресс-коррозии не установлена. Большая часть трубных сталей, исследованных на стойкость против КРН, имеет в качестве основной структурной составляющей феррит, который при содержании углерода в твердом растворе всего на уровне 20 ppm проявляет склонность к старению.
Деградация металла труб в процессе эксплуатации трубопровода связана также с формированием областей с повышенным содержанием водорода в молекулярной форме или в виде соединений в области присутствия неметаллических включений, являющихся эффективными ловушками или коллекторами водорода. Высокое содержание такой фракции водорода может быть причиной стресс-коррозионного разрушения, в первую очередь, по транскристаллитному механизму.
Методика оценки стойкости против КРН должна включать методы испытаний, которые позволят оценить стойкость стали против разрушения с учетом деградации металла в процессе эксплуатации.
Анализ существующих методов коррозионно-механических испытаний на стойкость трубных сталей против КРН показывает, что основные отличия методов, приводящие, в ряде случаев, к получению результатов, неадекватно отражающих поведение металла в эксплуатационных условиях, связаны не только с типом и способом создания напряженного состояния в испытуемых образцах, но и с отсутствием учета деградации стали в процессе эксплуатации. При этом наиболее опасным с точки зрения коррозионного растрескивания является высокая насыщаемость водородом при неблагоприятных характеристиках химического состава, микроструктурного состояния и присутствии в металле определенных типов неметаллических включений, являющихся ловушками для водорода.
Известен способ оценки стойкости стали против коррозионного растрескивания под напряжением, заключающийся в том, что от изделий отбирают пробы, изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию агрессивной среды. Образец выдерживают в агрессивной среде под постоянной нагрузкой в течение 720 часов. Уровень приложенного напряжения находится в интервале от 0,6 до 0,95 от предела текучести стали, в зависимости от требований нормативной документации. Критерием стойкости стали может быть максимальное значение приложенного напряжения, при котором образец не разрушился в течение 720 часов, или сам факт отсутствия разрушения при определенной фиксированной нагрузке (чаще всего 0,8 от предела текучести стали) также после выдержки в агрессивной среде в течение 720 часов. (Метод по NACE Standard ТМ 0198-98. Standard Test Method Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, p.1-16).
Недостатком способа является недостаточная чувствительность, большая длительность испытаний и невозможность ранжировать близкие по механическим характеристикам стали, содержащие разные по эффективности ловушки водорода, которые во многом определяют стойкость стали против стресс-коррозии.
Известен способ испытания трубных сталей на стойкость против коррозионного растрескивания под напряжением, включающий воздействие на испытуемый образец коррозионной среды, приложение нагрузки с последующей катодной поляризацией образца, при этом перед воздействием на образец коррозионной среды на него наносят ободок из коррозионно-стойкого материала для инициирования локального анодного растворения, а катодную поляризацию образца осуществляют током плотностью 40 -500 мА/см2 в момент активного анодного растворения до разрушения образца.
(патент РФ №2160894, МПК G01N 17/00 опубл. 20.12.2000 г.)
Способ осуществляют следующим образом: круглые образцы из трубных сталей помещают в коррозионную среду, например, в 3% р-р NaCl с постоянным барботажем СО2, нагружают в пределах 50-90% от предела текучести. Процесс коррозионного растрескивания под напряжением протекает следующим образом: на начальной стадии преобладает механизм анодного растворения в поверхностном слое, поэтому для инициирования анодного растворения используют метод щелевой коррозии, заключающийся в том, что на образец наносят ободок из коррозионно-стойкого материала. Затем на последующей стадии создают условия для локального наводороживания, поэтому в момент активного анодного растворения образец катодно поляризуется при плотности тока в пределах от 40-500 мА/см2. Время до разрушения образца является критерием оценки склонности материала образца к коррозионному растрескиванию под напряжением (стресс-коррозия).
Использование данного способа позволяет сократить время испытаний и повысить чувствительность к изменению физико-химического состояния образца.
Недостаток этого способа состоит в том, что он не учитывает исходный уровень механических характеристик испытываемой стали, который однозначно влияет на время до разрушения, а также не учитывает возможность деградации стали в процессе эксплуатации в результате старения с образованием карбидных или карбогидридных выделений и сегрегации и/или насыщение стали водородом вблизи определенных типов дефектов структуры и неметаллических включений.
Способы контроля стойкости сталей против коррозионного растрескивания под напряжением, учитывающие количество содержания водорода и/или изменение его содержания во времени, приводящие к деградации металла и к снижению его стойкости против коррозионного растрескивания, неизвестны.
Задача, на решение которой направлено изобретение, заключается в создании способа контроля стойкости против коррозионного растрескивания под напряжением сталей, предназначенных для труб магистральных газопроводов и других видов оборудования, эксплуатирующегося в условиях, приводящих к поступлению в металл водорода.
Техническим результатом настоящего изобретения является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.
Указанный технический результат достигается тем, что способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°С и после дополнительной термической обработки при температуре 850-1000°С в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают относительную влажность атмосферы в рабочем пространстве печи не менее 50%, при этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии.
Сущность изобретения заключается в следующем.
Структурное состояние стали, приводящее к ускоренному развитию стресс-коррозионных трещин и к сквозным стресс-коррозионным разрушениям, зачастую возникает при эксплуатации из-за совмещения процессов старения и водородного охрупчивания или из-за насыщения стали водородом вблизи определенных типов дефектов структуры и неметаллических включений.
Искусственное старение в течение 10-40 часов при температуре в интервале 50-300°C и дополнительная термическая обработка при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере при повышенной влажности с последующим охлаждением на воздухе имитируют поведение трубных сталей в реальных условиях эксплуатации, что может приводить к насыщению стали водородом и к развитию стресс-коррозионных разрушений.
Искусственное старение в течение 10-40 часов при температурах 50-300°С приводит к изменению состояния границ структуры стали и, как следствие, к аномально ускоренному развитию стресс-коррозии.
Дополнительная термическая обработка при температуре 850-1000°C в течение 10-60 минут в печи с воздушной атмосферой при относительной влажности не менее 50% с последующим охлаждением на воздухе провоцирует насыщение стали водородом в случае формирования неблагоприятного состояния границ в процессе старения или при наличии определенных типов дефектов структуры и неметаллических включений.
Температурные и временные значения старения, дополнительной термической обработки и требуемая влажность атмосферы в рабочем пространстве печи установлены экспериментально.
Примеры конкретного выполнения способа.
Были отобраны 5 вариантов труб с различными сроками эксплуатации до разрушения, из металла которых были изготовлены образцы в форме кубиков со стороной 5 мм. Для всех вариантов из аварийного запаса были взяты трубы тех же партий в исходном состоянии, из металла которых также были изготовлены образцы. Часть образцов была подвергнута искусственному старению - выдержке при температуре 200°C в течение 30 часов. Далее часть состаренных образцов подвергли термической обработке, которая заключалась в нагреве до 900°C и выдержке в течение 30 минут с последующим охлаждением на воздухе, при этом перед термической обработкой обеспечивали относительную влажность атмосферы в рабочем пространстве печи 65%. В одном варианте (2*) относительная влажность атмосферы в рабочем пространстве печи составила 41%.
Образцы во всех трех состояниях (исходном, состаренном и после старения и термической обработки) были проанализированы на содержание водорода. Определили относительное изменение содержания водорода в процессе старения и термической обработки по отношению к исходному содержанию водорода
(НСтар+Т/О-НИсх)/НИсх)·100%.
Срок эксплуатации трубопроводов до разрушения, влажность, а также результаты определения содержания водорода приведены в таблице.
№
влажность воздуха в печи
перед термической обработкой, %
При несоблюдении требования к величине относительной влажности атмосферы в рабочем пространстве печи перед термической обработкой (не менее 50%) получают недостоверные данные. В варианте 2* (относительная влажность 41%) содержание водорода после термической обработки меняется незначительно, при этом полученное небольшое относительное изменение содержания водорода (34%) неправильно характеризует короткий срок эксплуатации трубы до разрушения (17 лет).
Как следует из приведенных в таблице данных, наименьшее значение относительного изменения содержания водорода (29%) соответствует наибольшему сроку эксплуатации трубы до разрушения (33 года), а наибольшее значение относительного изменения содержания водорода (84%) соответствует наименьшему сроку эксплуатации трубы до разрушения (17 лет).
При необходимости обеспечения срока безаварийной эксплуатации трубопровода не менее 30 лет, относительное изменение содержания водорода должно быть не более 30%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОНТРОЛЯ СТОЙКОСТИ ТРУБНЫХ СТАЛЕЙ ПРОТИВ КОРРОЗИОННОГО РАСТРЕСКИВАНИЯ ПОД НАПРЯЖЕНИЕМ | 2013 |
|
RU2530486C1 |
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И ЭЛЕКТРОСВАРНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ | 2018 |
|
RU2681588C1 |
МОДИФИКАТОР ДЛЯ ОБРАБОТКИ СТАЛИ | 2008 |
|
RU2364652C1 |
ТРУБНАЯ ЗАГОТОВКА ИЗ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ | 2009 |
|
RU2413030C1 |
СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ СТОЙКОСТИ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ ТРУБНЫХ СТАЛЕЙ И ТРУБ, ИЗГОТОВЛЕННЫХ ИЗ НИХ | 2014 |
|
RU2554659C1 |
Способ производства горячекатаной высокопрочной коррозионно-стойкой стали | 2015 |
|
RU2615426C1 |
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОГО ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА | 2018 |
|
RU2688077C1 |
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОГО ХЛАДОСТОЙКОГО СВАРИВАЕМОГО ЛИСТОВОГО ПРОКАТА ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ | 2014 |
|
RU2569619C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ | 2009 |
|
RU2409697C1 |
ЖАРОПРОЧНАЯ ЭКОНОМНОЛЕГИРОВАННАЯ СТАЛЬ | 2014 |
|
RU2564647C1 |
Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают влажность атмосферы в рабочем пространстве печи не менее 50%. При этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии. Техническим результатом является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.
Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением, заключающийся в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают относительную влажность атмосферы в рабочем пространстве печи не менее 50%, при этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии.
СПОСОБ ОПРЕДЕЛЕНИЯ СТОЙКОСТИ МЕТАЛЛА ПОДЗЕМНЫХ ТРУБОПРОВОДОВ К СТРЕСС-КОРРОЗИИ | 2002 |
|
RU2222000C2 |
СПОСОБ ИСПЫТАНИЯ ТРУБНЫХ СТАЛЕЙ НА КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ ПОД НАПРЯЖЕНИЕМ | 1999 |
|
RU2160894C1 |
Устройство для исследования наводороживания и коррозионного растрескивания металлических образцов под напряжением | 1981 |
|
SU970195A1 |
Устройство для измерения затухания сверхвысокочастотных трактов | 1978 |
|
SU987536A1 |
Авторы
Даты
2014-05-10—Публикация
2012-10-31—Подача