ГЕН ЗВЕЗДЧАТКИ Stellaria media, КОДИРУЮЩИЙ АНТИМИКРОБНЫЙ ПЕПТИД Sm-AMP-X Российский патент 2014 года по МПК C12N15/29 

Описание патента на изобретение RU2531505C1

Изобретение относится к области биотехнологии растений, конкретно к защитным генам растений, кодирующим антимикробные пептиды (АМР), и может быть использовано для создания сельскохозяйственных культур, устойчивых к патогенам.

В настоящее время более 1 миллиарда человек на Земле недоедают [FAO, 2009. The state of food security in the world 2009. Electronic Publishing Policy and Support Branch Communication Division FAO. http://www.fao.org/docrep/012/i0876e/i0876e00.htm (accessed 23 April 2010)]. При этом население Земли продолжает расти. По прогнозам, к 2050 году оно увеличится на 2-2.5 миллиарда человек [UN Population Council, 2003. Demographic 2000-2050 according to the 2002 revision of the United Nations population projections. Popul. Dev. Rev. 29, 139-145]. Предполагаемое изменение климата и сокращение запасов воды усугубляет проблему обеспечения продовольствием растущее население Земного шара. Все это требует разработки новых сельскохозяйственных систем и технологий для повышения урожайности и качества сельскохозяйственной продукции. Борьба с патогенами и вредителями сельскохозяйственных культур является важнейшей составной частью современного земледелия. Однако в существующем виде практика ведения сельского хозяйства приводит к значительным потерям плодородного слоя почвы и ее чрезмерным загрязнением химическими средствами защиты растений (пестицидами и фунгицидами), что ухудшает экологическую обстановку и губительно для здоровья человека.

Внедрение достижений генетической инженерии, которая позволяет встраивать чужеродные гены, обусловливающие ценные сельскохозяйственные признаки, в геномы культурных растений способно решить многие из указанных проблем. В настоящее время созданы и успешно используются трансгенные растения, обладающие устойчивостью к герибицидам, что позволяет облегчить и усовершенствовать технологию обработки сельскохозяйственных земель и замедляет эрозию почвы, а также растения, устойчивые к насекомым-вредителям, что существенно сокращает объемы используемых для обработки пестицидов. Устойчивость к насекомым-вредителям обеспечивается генами энтомотоксинов бактерии Bacillus thuringiensis [Andrews R.E., Faust R.M., Wabiko H., Raymond K.C., Bulla L.A. The biotechnology of Bacillus thuringiensis. // Crit. Rev. Biotech. 1987. Vol. 6. P. 163-232; Vaeck M., Reynaerts A., Höfte H., Jansens S., De Beuckeleer M., Dean C., Zabeau M., Van Montagu M., Leemans J. Transgenic plants protected from insect attack. // Nature 1987. Vol. 328. P. 33-37]. Генетически модифицированные сельскохозяйственные культуры, устойчивые к гербицидам и насекомым-вредителям, успешно выращиваются в Соединенных Штатах Америки, Бразилии, Аргентине, Индии, Канаде, Китае, Парагвае и Южной Африке на площадях, достигающих 134 млн. га [James C. 2009. Global status of commercialized Biotech/GM crops. ISAAA Brief 41. Executive Summary. http://www.isaaa.org/resources/publications/briefs/41/executive summary/default.asp (accessed 23 April 2010]. Использование культур, устойчивых к гербицидам (преимущественно глифосату) и растительноядным насекомым, во многих случаях приводит к увеличению их урожайности [Munkvold G.P., Hellmich R.L., Rice L.G. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and non-transgenic hybrids. Plant Dis. 1999. Vol. 81. P. 556-565].

В то время как используя методы генетической инженерии, уже удалось достичь значительных успехов в создании и внедрении в практику сортов, устойчивых к гербицидам и насекомым-вредителям, а на стадии испытаний находятся генетически модифицированные растения, которые обладают улучшенными пищевыми качествами или повышенной урожайностью, устойчивы к засухе или другим видам абиотического стресса, на рынке до сих пор не представлены культуры, устойчивые к грибным и бактериальным заболеваниям [Park J.R., McFarlane I., Phipps R.H., Ceddia G. The role of transgenic crops in sustainable development. Plant Biotechnology Journal 2011.Vol. 9. P. 2-21].

Наибольший интерес в направлении создания таких культур представляют гены антимикробных пептидов растений. Антимикробные пептиды являются важнейшими компонентами иммунной системы растений. Они обладают широким спектром антимикробного действия, не вызывают появления устойчивых форм, и их гены могут быть непосредственно встроены в геном чувствительных к патогенам растений. Дикорастущие сорные растения, которые обладают повышенной устойчивостью к патогенам, являются перспективными донорами генов новых высокоактивных антимикробных пептидов.

Stellaria media - мокрица, или звездчатка средняя, является широко распространенным сорным растением. Звездчатка средняя относится к семейству Гвоздичные Caryophyllaceae, классу двудольные Dicotyledones (Liliopsida), отделу покрытосеменные (цветковые) Magnoliophyta (Angiospermae). В ряде стран она используется в качестве листовой овощной культуры, поэтому применение генов этого растения для улучшения свойств сельскохозяйственных культур, в частности, генов антимикробных пептидов для повышения устойчивости к фитопатогенам, представляется безопасным для здоровья человека и сельскохозяйственных животных.

Изобретение решает задачу расширения ассортимента защитных генов растений для использования в биотехнологии при создании новых форм растений, устойчивых к факторам внешней среды, с помощью методов генетической инженерии.

Поставленная задача решается с помощью гена звездчатки Stellaria media, кодирующего антимикробный пептид звездчатки Stellaria media sm-amp-x, обладающего последовательностью SEQ ID №1. Антимикробный пептид звездчатки Stellaria media sm-amp-x проявляет антифунгальную активность в тестах in vitro против Aspergillus niger, Fusarium solani и Fusarium oxysporum в микромолярных концентрациях (Таблица 1). Это означает, что ген звездчатки sm-amp-x можно использовать для повышения устойчивости растений к патогенам c использованием методов генетической инженерии.

Гомологичных ДНК и кДНК к заявленной нуклеотидной последовательности ранее известно не было.

Таблица 1.

Антифунгальное действие пептида Sm-AMP-X, кодируемого нуклеотидной последовательностью sm-amp-x и выделенного из Stellaria media L., на конидии грибов через 24 часа после заражения.

Гриб IC50, мкМ* Aspergillus niger 4,0 Fusarium solani 7,2 Fusarium oxysporum 5,4 *IC50 соответствует концентрации пептида, при которой достигается 50%-ное ингибирование прорастания спор гриба.

Нуклеотидная последовательность sm-amp-x (SEQ ID №1) соответствует кодирующей части кДНК (мРНК), полученной из проростков звездчатки Stellaria media.

Нуклеотидная последовательность sm-amp-x кодирует белок-предшественник защитного пептида Sm-AMP-X длиной 478 аминокислотных остатков (SEQ ID №2), состоящий из N-концевого сигнального пептида длиной 20 аминокислотных остатков, 11 предположительно пептидных доменов, зрелого пептидного домена из 33 остатков и C-концевого продомена длиной 19 остатков.

Техническим результатом изобретения является модульная структура гена, кодирующего защитный пептид Sm-AMP-X.

Изобретение иллюстрируют следующие примеры.

Пример 1.

Установление структуры кДНК звездчатки Stellaria media, кодирующей новый антимикробный пептид Sm-Amp-X.

Аминокислотная последовательность пептида Sm-Amp-X:

ValAspProAspValArgAlaTyrCysLysHisGlnCysMetSerThrArgGlyAspGlnAlaArgLysIle CysGluSerValCysMetArgGlnAsp.

Тотальную РНК выделяют из 5-дневных проростков с помощью набора реагентов Trizol RNA Prep 100 (Изоген, Россия) в соответствии с протоколом фирмы-производителя. 2 мкг тотальной РНК используют в качестве матрицы для синтеза кДНК с помощью набора Mint (Евроген, Россия).

Определение структуры кДНК проводят в несколько этапов: определение 3'-концевой части кДНК, определение 5'-концевой части кДНК, получение кодирующей части гена. Для двуступенчатой ПЦР с целью определения 3'-концевой части кДНК на основе известной аминокислотной последовательности пептида Sm-AMP-X были сконструированы и синтезированы праймеры 4CDir1 и 4C Dir2 (Таблица 2).

Таблица 2.

Последовательности праймеров.

Для 3'-области кДНК 4СDir1 5′- GTAGATCCAGA(T/C)GT(A/C/T/G)(A/C)G(A/C/T/G)GC-3′ 4СDir2 5′-GCATA(T/C)TG(T/C)AA(A/G)CA(T/C)CA(A/G)TG(T/C)ATG-3′ Универсальный
праймер
T7Cap 5′-GTAATACGACTCACTATGGGCAAGCAGTGGTAACAACGCAGAGT-3′
Для 5'-области кДНК 4СRev1 5ґ-ATCAAACCAAAGAGCTAACTTATAC-3ґ

3'-концевую область кДНК амплифицируют с помощью двуступенчатой ПЦР, для первого раунда амплификации используют универсальный праймер T7Cap и специфический праймер 4C Dir1, для второго раунда - универсальный праймер T7Cap и специфический праймер 4C Dir2. Амплифицированные фрагменты клонируют и секвенируют на автоматическом секвенаторе.

На основе установленных нуклеотидных последовательностей фрагментов кДНК был сконструирован и синтезирован праймер для амплификации 5'-областей кДНК sm-amp-x: 4Crev1 (Таблица 2). 5'-фрагмент кДНК амплифицируют с использованием универсального праймера T7Cap и специфического праймера 4Crev1. В результате получают полноразмерную кДНК sm-amp-x, кодирующую белок-предшественник пептида Sm-AMP-X.

Похожие патенты RU2531505C1

название год авторы номер документа
ГЕНЫ ЗВЕЗДЧАТКИ STELLARIA MEDIA, КОДИРУЮЩИЕ ЗАЩИТНЫЕ ПЕПТИДЫ 2011
  • Егоров Цезий Алексеевич
  • Шагин Дмитрий Алексеевич
  • Василевский Александр Александрович
  • Мусолямов Александр Хусаинович
  • Бабаков Алексей Владимирович
  • Гришин Евгений Васильевич
RU2457251C1
ГЕНЫ ПШЕНИЦЫ Triticum kiharae, КОДИРУЮЩИЕ АНТИМИКРОБНЫЕ ПЕПТИДЫ 2011
  • Одинцова Татьяна Игоревна
  • Славохотова Анна Александровна
  • Пухальский Виталий Анатольевич
  • Коростылева Татьяна Викторовна
  • Истомина Екатерина Александровна
  • Уткина Любовь Леонидовна
  • Андреев Ярослав Алексеевич
  • Егоров Цезий Алексеевич
  • Рогожин Евгений Александрович
RU2483109C1
ПЕПТИД ЗВЕЗДЧАТКИ STELLARIA MEDIA L., ОБЛАДАЮЩИЙ АНТИФУНГАЛЬНОЙ АКТИВНОСТЬЮ 2015
  • Одинцова Татьяна Игоревна
  • Слезина Марина Павловна
  • Рогожин Евгений Александрович
  • Пухальский Виталий Анатольевич
  • Славохотова Анна Александровна
  • Коростылева Татьяна Викторовна
  • Истомина Екатерина Александровна
  • Шиян Александр Николаевич
RU2603058C1
ПЕПТИД, ОБЛАДАЮЩИЙ АНТИФУНГАЛЬНОЙ АКТИВНОСТЬЮ 2007
  • Бабаков Алексей Владимирович
  • Мусолямов Александр Хусаинович
  • Гришин Евгений Васильевич
  • Егоров Цезий Алексеевич
  • Василевский Александр Александрович
  • Никонорова Александра Константиновна
RU2352580C1
Промотор pro-SmAMP-D1 из растения звездчатка средняя (Stellaria media L.) для биотехнологии растений 2022
  • Комахин Роман Александрович
  • Иванова Любовь Александровна
RU2799014C1
Промотор pro-SmAMP-X из растения звездчатка белая (Stellaria media L.) для экспрессии рекомбинантных генов в клетках растений 2020
  • Комахин Роман Александрович
  • Иванова Любовь Александровна
RU2766095C1
ПЕПТИД, ОБЛАДАЮЩИЙ АНТИМИКРОБНОЙ АКТИВНОСТЬЮ 2008
  • Одинцова Татьяна Игоревна
  • Егоров Цезий Алексеевич
  • Гришин Евгений Васильевич
  • Василевский Александр Александрович
  • Мусолямов Александр Хусаинович
  • Рогожин Евгений Александрович
  • Славохотова Анна Александровна
  • Пухальский Виталий Анатольевич
  • Шиян Александр Николаевич
RU2380374C1
КОМПОЗИЦИЯ НА ОСНОВЕ ГИБРИДНОГО РЕКОМБИНАНТНОГО ПОЛИПЕПТИДА ДЛЯ ЗАЩИТЫ РАСТЕНИЙ ОТ ЗАБОЛЕВАНИЙ, ВЫЗЫВАЕМЫХ ООМИЦЕТАМИ 2021
  • Барашкова Анна Сергеевна
  • Тальянский Михаил Эммануилович
  • Завриев Сергей Кириакович
  • Рогожин Евгений Александрович
  • Рязанцев Дмитрий Юрьевич
  • Чуенко Александр Михайлович
  • Супрунова Татьяна Павловна
RU2786706C2
ПОСЛЕДОВАТЕЛЬНОСТИ СИНТЕТИЧЕСКИХ НУКЛЕОТИДОВ, КОДИРУЮЩИХ ИНСЕКТИЦИДНЫЙ КРИСТАЛЛИЧЕСКИЙ БЕЛОК, И ИХ ПРИМЕНЕНИЯ 2020
  • Парихар, Дваркеш Сингх
  • Верма, Пареш
RU2820699C2
МОЛЕКУЛЫ НУКЛЕИНОВЫХ КИСЛОТ, КОТОРЫЕ ПРИДАЮТ УСТОЙЧИВОСТЬ К НАСЕКОМЫМ-ВРЕДИТЕЛЯМ ОТРЯДА ЖЕСТКОКРЫЛЫХ 2011
  • Нарва Кеннет Э.
  • Ли Хуажун
  • Гэн Чаосянь
  • Ларринуа Игнасио
  • Олсон Моника Бритт
  • Эланго Навин
RU2639549C2

Реферат патента 2014 года ГЕН ЗВЕЗДЧАТКИ Stellaria media, КОДИРУЮЩИЙ АНТИМИКРОБНЫЙ ПЕПТИД Sm-AMP-X

Изобретение относится к области биохимии, в частности к гену звездчатки Stellaria media, кодирующему антимикробный пептид звездчатки Stellaria media Sm-AMP-Х, обладающему последовательностью SEQ ID №1. Изобретение решает задачу пополнения ассортимента защитных генов растений для использования в биотехнологии при создании новых форм растений, устойчивых к факторам внешней среды, с помощью методов генной инженерии. 2 табл., 1 пр.

Формула изобретения RU 2 531 505 C1

Ген звездчатки Stellaria media, кодирующий антимикробный пептид звездчатки Stellaria media Sm-AMP-X, обладающий последовательностью SEQ ID №1.

Документы, цитированные в отчете о поиске Патент 2014 года RU2531505C1

ГЕНЫ ЗВЕЗДЧАТКИ STELLARIA MEDIA, КОДИРУЮЩИЕ ЗАЩИТНЫЕ ПЕПТИДЫ 2011
  • Егоров Цезий Алексеевич
  • Шагин Дмитрий Алексеевич
  • Василевский Александр Александрович
  • Мусолямов Александр Хусаинович
  • Бабаков Алексей Владимирович
  • Гришин Евгений Васильевич
RU2457251C1
SHUKUROV R.R
et al., Increase of resistance of Arabidopsis thaliana plants to phytopathogenic fungi expressing hevein-like peptides from weed plant Stellaria media, Russian Agricultural Sciences, 2010, Volume 36, Issue 4, pp 265-267
ШУКУРОВ Р.Р., Антимикробные пептиды сорного растения Stellaria media и их гены,

RU 2 531 505 C1

Авторы

Одинцова Татьяна Игоревна

Славохотова Анна Александровна

Коростылева Татьяна Викторовна

Истомина Екатерина Александровна

Рогожин Евгений Александрович

Даты

2014-10-20Публикация

2013-06-06Подача