Изобретение относится к микро- и наноэлектронике и может быть использовано в устройствах нанесения полифункциональных композитных фуллеренсодержащих покрытий на значительные площади.
Известны способы термического испарения фуллеренов в вакууме (Сошников И.П., Лунев А.В., Гаевский М.Э. и др. // Журнал технической физики. 2000. Т. 70. В. 6. С. 98-101; Козырев С.В., Роткин В.В. // Физика и техника полупроводников. 1993. Т. 27. В. 9. С. 1409-1411; Шпилевский Э.М., Баран Л.В., Шпилевский М.Э. // Материалы, технологии, инструменты. 1998. Т. 3. N. 2. С. 105-108), основанные на принципе испарения порошка фуллеренов резистивными нагревателями. Общим недостатком таких способов является низкая надежность испарителей, низкие плотности мощности и скорости испарения, малые объемы испаряемого вещества и, как следствие, высокая неоднородность покрытий.
Известен способ вакуумного напыления пленок и устройство для его осуществления (патент RU 2190036, C23C 14/30, 2000), в котором испаряемую электронным пучком мишень дополнительно нагревают направленным тепловым излучением. Недостаток данного способа состоит в низкой эффективности и надежности, значительном энергопотреблении, низкой производительности и невозможности нанесения однородных покрытий на большие площади.
Известен способ получения нанопорошков и устройство для его реализации (патент RU 2353573, B82B 3/00, 2009), в котором мишень испаряют в вакууме сфокусированным импульсным электронным пучком - 100 кэВ энергии. Недостаток способа состоит в сложности технического решения, малой производительности и характеризуется крайне низким коэффициентом использования испаряемого материала.
Наиболее близким техническим решением является способ вакуумного конденсационного нанесения покрытий (патент RU 2033475, C23C 14/30, 1992), по которому поток пара создают путем бомбардировки распыляемой мишени сканирующим по ее поверхности электронным пучком с фиксацией электронного пучка в каждой из обрабатываемых точек мишени в течение ~24 мкс. Время перемещения от точки к точке ~1,5 мкс. К характерным недостаткам способа вакуумного конденсационного нанесения покрытий, принятого в качестве прототипа изобретения, относится невысокая эффективность испарения и низкий коэффициент использования испаряемого материала. Точечный источник испарения, хотя и сканируется, затруднят получение однородных по толщине покрытий на большие площади с высокой производительностью.
Изобретение позволяет устранить указанные недостатки прототипа, повысить эффективность процесса благодаря достижению предельно высокого значения коэффициента использования испаряемого материала, способствующего снижению энергозатрат, увеличению производительности и нанесению покрытий на большие площади. Указанная задача решается благодаря тому, что мишень фуллереновой смеси, спрессованная в форме таблетки, коаксиально охватывается трубчатым пучком электронов и эффективно испаряется в вакууме ~10-2 Па сведением за время 0,1-1 с трубчатого пучка электронов мощностью ~1 кВт в пятно, обеспечивая полное испарение фуллеренов при предельно высокой эффективности нагрева. При этом наиболее полно проявляется характерная особенность быстрого воздействия интенсивного пучка электронов, при котором молекулы фуллеренов при испарении сохраняют С-С ковалентную связь. Кроме того, вакуумное испарение сводимым в пятно трубчатым электронным пучком упрощает нанесение пленок на поверхности >1 м2, так как при компрессии электронного пучка достигаются предельно высокие удельные плотности мощности >109 Вт/м и происходит полное испарение материала значительного количества. Указанный характер испарения качественно и существенно отличен от такового в прототипе.
На фиг. 1 представлена схема реализации способа испарения фуллеренов в вакууме применительно к нанесению пленок фуллеренов. Синтез исходной фуллереновой смеси проводился в плазмохимическом реакторе дугового разряда при давлении 105 Па. Из полученной сажи бензолом были выделены фуллерены. Фуллереновая смесь в долевом соотношении содержала 0,8 C60, 0,15 C70, 0,04 высших фуллеренов и 0,01 оксидов C60O и C70O. Из порошка фуллереновой смеси прессованием при давлении 32-34 кг/см2 изготавливалась таблетка 1 ⌀ 20 мм и толщиной 3 мм. Формируемый электромагнитной линзой трубчатый пучок электронов 2, током 50 мА и энергией 20 кэВ падает на графитовый коллектор 3. Электроны проецируются в виде кольца 4 с внешним диаметром 50 мм и внутренним ⌀ 48 мм, коаксиально охватывая таблетку 1, с возможностью быстрого радиального сужения в направлении стрелок 5 и сведения кольцевой проекции пучка на поверхности коллектора в пятно 6 диаметром 3 мм. Мощность пучка электронов 103 Вт. Заслонкой 7 открывался доступ на подложку 8 паров испаряемых частиц, образующих пленку. Размеры подложки (аморфное стекло) составляли 30×30 см2.
Толщину пленок измеряли микроинтерферометром Линника МИИ-4. Спектры комбинационного рассеяния регистрировали на Фурье КР-спектрометре RPS 100/S фирмы Bruker. Возбуждение спектра производилось непрерывным Ya:Nd лазером, λ=1064 нм, мощность 10 мВт. Электронные спектры поглощения растворов фуллеренов регистрировали на двухлучевом спектрофотометре UVIKON 943.
Возможность осуществления изобретения с использованием признаков способа, включенных в формулу изобретения, подтверждается примером его практической реализации.
Пример. Процесс испарения осуществлялся в вакууме 2·10-2 Па. Сначала кольцевой отпечаток 4 электронного пучка 2 концентрировался на периферии таблетки 1 с ее коаксиальным охватом, при этом заслонка 7 закрывала подложку 8 от прямого попадания испаренных частиц углерода, хотя при температуре ~1,7·103 К в зоне касания ускоренными электронами графитового держателя давление паров углерода низко и составляет 10-8 Па. Из исходного состояния рис.1 трубчатый пучок электронов с помощью электромагнитной линзы, радиально сжимался, сближаясь с таблеткой. В момент касания таблетки 1 электронами одновременно по всему периметру таблетки начинается интенсивное испарение порошка фуллереновой смеси. Заслонка 7 отводится, обеспечивая поступление покидающих зону электронного перегрева частиц на подложку 8. За время 0,1-1 с трубчатый пучок электронов 2 сводится к центру таблетки 1 в пятно 6 диаметром 3 мм, обращая таблетку в пар, который в вакууме естественным образом расширяется из области перегрева и конденсируется на подложке 8 при температуре подложки 300 К. После чего заслонка 7 переводится в исходное положение.
Пленка, полученная электронным испарением порошка фуллереновой смеси, спрессованной в виде таблетки, имела толщину 1-2 мкм и характеризовалась коричневой окраской. Площадь подложки, покрытая пленкой, составила 0,1 м. Проведенные рентгеноструктурные исследования характеризуют пленки, наносимые при температуре подложки 300 К, как рентгеноаморфные. Кристаллическая структура проявляется у пленок, наносимых на подложку, нагретую до 393 К, и выдержкой свежеосажденных пленок в течение 0,5 ч при 373 К в вакууме.
Сравнительный анализ электронных спектров поглощения фиг. 2 и спектров комбинационного рассеяния фиг. 3 исходного порошка фуллереновой смеси и сформированных фуллереновых пленок показал, что интенсивное испарение фуллеренов C60 и C70 происходит без разрыва С-С ковалентных связей. В спектре комбинационного рассеяния полученной пленки наблюдаются наиболее интенсивные линии фуллеренов C60 (495 см-1, 1468 см-1) и C70 (271 см-1). В ширину линий вследствие малой толщины пленки большой вклад вносит связь молекул фуллерена с подложкой.
Таким образом, испарением порошка фуллереновой смеси при температурах испарения >1.7·103 К, существенно превышающих температуру сублимации фуллерена (7,23-7,73)·102 К, можно формировать пленки фуллеренов. Такие условия получения пленок фуллеренов впервые достигнуты при сведении трубчатого пучка электронов в пятно. Увеличение тока электронного пучка >1 А открывает возможность нанесения пленок фуллеренов на поверхности >1 м2 благодаря увеличению мощности пучка >20 кВт и соответственно количества испаряемого порошка.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СИНТЕЗА ПОКРЫТИЙ ПРОИЗВОДНЫХ ФУЛЛЕРЕНОВ | 2013 |
|
RU2517706C1 |
Способ получения эндофуллеренов 3d-металлов | 2017 |
|
RU2664133C1 |
СПОСОБ УДАЛЕНИЯ ФУЛЛЕРЕНОВ ИЗ САЖИ | 1993 |
|
RU2082734C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОПРОПАНОВЫХ ПРОИЗВОДНЫХ ФУЛЛЕРЕНОВ, ПРИМЕНЕНИЕ ОРГАНИЧЕСКИХ ПРОИЗВОДНЫХ ФУЛЛЕРЕНОВ В КАЧЕСТВЕ МАТЕРИАЛОВ ДЛЯ ЭЛЕКТРОННЫХ ПОЛУПРОВОДНИКОВЫХ УСТРОЙСТВ, ОРГАНИЧЕСКОГО ПОЛЕВОГО ТРАНЗИСТОРА, ОРГАНИЧЕСКОЙ ФОТОВОЛЬТАИЧЕСКОЙ ЯЧЕЙКИ, ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР И ОРГАНИЧЕСКАЯ ФОТОВОЛЬТАИЧЕСКАЯ ЯЧЕЙКА | 2011 |
|
RU2519782C2 |
СПОСОБ РАЗДЕЛЕНИЯ ФУЛЛЕРЕНОВ | 2013 |
|
RU2550891C2 |
СПОСОБ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА ФУЛЛЕРЕНОВ | 1997 |
|
RU2086503C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕШАННЫХ ФУЛЛЕРЕНОЛОВ | 2011 |
|
RU2473462C2 |
СПОСОБ ПОЛУЧЕНИЯ ФУЛЛЕРЕНОВ $$$ И $$$ И РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ФУЛЛЕРЕНСОДЕРЖАЩЕЙ САЖИ | 2003 |
|
RU2259942C2 |
СПОСОБ ПОЛУЧЕНИЯ ФУЛЛЕРЕНА С | 2006 |
|
RU2327635C1 |
СПОСОБ ПОЛУЧЕНИЯ ФУЛЛЕРЕНА С | 2010 |
|
RU2456233C2 |
Изобретение относится к получению фуллеренсодержащей пленки на подложке и может быть использовано в микро- и наноэлектронике. Сформированный в виде кольца трубчатый пучок электронов проецируют на мишень, выполненную в виде таблетки из порошка фуллереновой смеси, с её коаксиальным охватом. Осуществляют вакуумное испарение таблетки при температуре, превышающей 1,7·103 К, со сведением кольцевой проекции пучка электронов за время 0,1-1 с в пятно в центр таблетки и конденсацию паров фуллеренов на подложке. Обеспечивается предельно высокое значение коэффициента использования испаряемого материала, а также обеспечивается возможность нанесения покрытий на большие площади. 1 з.п. ф-лы, 3 ил., 1 пр.
1. Способ получения фуллеренсодержащей пленки на подложке, включающий испарение в вакууме электронным пучком мишени, содержащей фуллерены, и конденсацию паров фуллеренов на подложке, отличающийся тем, что сформированный в виде кольца трубчатый пучок электронов проецируют на мишень, выполненную в виде таблетки из порошка фуллереновой смеси, с её коаксиальным охватом и осуществляют вакуумное испарение таблетки при температуре, превышающей 1,7·103 К, со сведением кольцевой проекции пучка электронов за время 0,1-1 с в пятно в центр таблетки и конденсацию паров фуллеренов на подложке.
2. Способ по п.1, отличающийся тем, что трубчатый пучок электронов формируют с внешним диаметром 50 мм и энергией 20 кэВ, используют мишень в виде таблетки диаметром 20 мм и толщиной 3 мм, при этом трубчатый пучок электронов сводят в пятно диаметром 3 мм.
СПОСОБ ВАКУУМНОГО КОНДЕНСАЦИОННОГО НАНЕСЕНИЯ ПОКРЫТИЙ | 1992 |
|
RU2033475C1 |
RU 2471705 C1, 10.01.2013 | |||
Поглотительный сосуд для анализа газов | 1926 |
|
SU10387A1 |
US 6312768 B1, 06.11.2001 | |||
US 20100272985 A1, 28.10.2010 | |||
АЗАРЕНКОВ Н.А | |||
и др., Наноструктурные покрытия и наноматериалы | |||
Основы получения | |||
Свойства | |||
Области применения | |||
Особенности современного наноструктурного направления в нанотехнологии, М., Книжный дом Либроком, 2012, стр.93-97 |
Авторы
Даты
2014-11-10—Публикация
2013-05-15—Подача