СПОСОБ ОПРЕДЕЛЕНИЯ МЕДИ В ПРИРОДНЫХ И ПИТЬЕВЫХ ВОДАХ Российский патент 2014 года по МПК G01N21/63 

Описание патента на изобретение RU2532922C1

Изобретение относится к аналитической химии, в частности к сорбционно-спектроскопическим способам определения ионов меди(II) в элюате с предварительным их концентрированием из природных и питьевых вод на комплексообразующем сорбенте, и может быть использовано в лабораториях санитарно-эпидемиологических исследований и сертификации, в практике химико-токсикологических лабораторий.

Известен способ определения микроконцентрации меди (патент РФ №2013766, МПК G01N 21/63, опубл. 30.05.1994 г.), включающий сорбционное концентрирование меди на полиакрилонитрильном волокне, содержащем α-аминометиленфосфоновые группировки с последующим фотометрическим определением аналита в элюате.

Основным недостатком данного способа является большая трудоемкость фотометрического анализа элюата по сравнению с атомно-спектроскопическим.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ сорбционно-атомно-абсорбционного определения меди в водопроводных (питьевых) и природных водах с предварительным концентрированием на волокнистом хитозан-углеродном сорбенте, помещенном в полиэтиленовую колонку, путем пропускания анализируемой пробы через колонку с последующим элюированим катионов меди и их определение методом атомно-абсорбционной спектроскопии (Земскова Л.А., Войт А.В., Емелина Т.Б. и др. Применение волокнистого хитозан-углеродного сорбента для предварительного концентрирования меди (II) при анализе природных вод // Заводская лаборатория. Диагностика материалов. 2009. Т.75. №10, с.17-19).

Недостатком данного способа является длительность анализа - десорбция меди с поверхности сорбента занимает 1 час. Для десорбции аналита с поверхности сорбента используется достаточно концентрированный раствор элюента (HNO, (1:2)). Отмечается, что одновременно с медью происходит концентрирование железа.

Кроме того, вышеуказанный способ не позволяет значительно упростить состав элюата по сравнению с исходной пробой.

Задачей изобретения является повышение эффективности концентрирования меди за счет использования селективного сорбционного материала, обладающего экологичностью, а также повышение экспрессности определения меди в природных и питьевых водах.

Поставленная задача решается за счет того, что в способе определения меди в природных и питьевых водах, включающем концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии, концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин, а элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л, при этом раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин, в полученном элюате определяют содержание меди методами атомной спектроскопии.

Использование для извлечения меди в качестве сорбционного материала сшитого N-2-сульфоэтилхитозана со степенью замещения 0.5, полученного на основе природного биополимера, делает способ экологически более безопасным, чем некоторые известные.

Экспериментально установлено, что при динамическом извлечении ряда ионов щелочноземельных и переходных металлов (кальция (II), магния (II), стронция (II), бария (II), меди (II), кобальта (II), цинка (II), марганца (II), никеля (II), свинца (II), кадмия (II)), находящихся в растворе в эквимолярных количествах, степень извлечения мешающих ионов металлов при рН 6.0 (аммиачно-ацетатный буферный раствор) и скорости пропускания раствора 1 мл/мин не превышает 10%. Таким образом, заявляемый способ позволяет повысить эффективность концентрирования меди и определения меди за счет использования предлагаемого селективного сорбционного материала, обладающего улучшенными селективными характеристиками.

Кроме того, десорбция меди проводится путем пропускания раствора азотной кислоты через патрон, заполненный сорбционным материалом, со скоростью 1-2 мл/мин, что позволяет повысить экспрессность определения меди в природных и питьевых водах.

Заявленный способ определения меди в природных и питьевых водах иллюстрируется следующим примером.

Сшитый N-2-сульфоэтилхитозан со степенью замещения 0.5 получают путем взаимодействия хитозана с 2-бромэтансульфонатом натрия, экстракции охлажденной реакционной массы этиловым спиртом, последующей обработки раствором глутарового альдегида в кислой среде, промывания и сушки (Пестов А.В., Петрова Ю.С., Бухарова А.В., Неудачина Л.К., Корякова О.В., Маточкина Е.Г., Кодесс М.П., Ятлук Ю.Г. Синтез в геле и сорбционные свойства N-2-сульфоэтилхитозана // Журнал прикладной химии. 2013. Т.86, №2, с.290-293).

К 200.0 мл отфильтрованной от механических примесей анализируемой воды добавляют 3 мл концентрированной азотной кислоты и несколько капель концентрированной перекиси водорода. Пробу кипятят в течение 20 минут для разрушения комплексов ионов металлов с органическими примесями. Добавляют 10 мл 10% раствора гидроксиламина солянокислого для предотвращения выпадения в осадок гидроксида железа (III). Доводят значение кислотности среды раствора на иономере аммиачно-ацетатным буферным раствором до рН 6.0. Затем полученный раствор пропускают со скоростью 1-2 мл/мин через концентрирующий патрон, содержащий 0.1 г сшитого N-2-сульфоэтилхитозана, предварительно промытого деионизованной водой. Сорбированные ионы металлов элюируют пропусканием через патрон 10.0 мл 0.1 моль/л раствора азотной кислоты со скоростью 1-2 мл/мин. Определение концентраций элементов проводят методами атомно-эмиссионной или атомно-абсорбционной спектроскопии при оптимальных условиях анализа рассматриваемых элементов (табл.1). Правильность предложенного способа определения ионов меди в водах подтверждается методом «введено-найдено» (табл.2).

Таблица 1 Результаты концентрирования металлов, содержащихся в природных и питьевых водах методом атомно-абсорбционной спектроскопии с электротермической атомизацией Металл Найдено металла в пробе воды, мкг Найдено металла в элюате, мкг Степень извлечения металла, % Анализ водопроводной воды, г.Екатеринбург Cu 8.97±.18 8.66±0.46 96.5 Ni 5.70±0.81 0.22±0.05 3.9 Со 1.14±0.01 0.02±0.01 1.8 Zn 62.93±4.85 4.06±0.11 6.5 Cd 1.27±0.06 0.00 0.0 Pb 2.35±0.01 0.21±0.01 8.9 Mn 18.32±1.37 0.26±0.01 1.4 Fe 260.05±3.88 11.27±0.17 4.3 Mg 38405.49±763.30 32.17±1.12 0.1 Ca 17738.99±1322.09 23.66±0.24 0.1 Sr 17.46±0.78 10.08±0.02 0.5 Ba 2.33±0.05 0.09±0.01 3.9 Анализ воды из р. Исеть, г.Екатеринбург Cu 2.49±0.09 2.42±0.04 97.2 Ni 2.01±0.15 0.16±0.01 8.0 Co 0.33±0.08 0.02±0.01 6.1 Zn 31.82±3.64 3.01±0.13 9.5 Cd 1.16±0.06 0.00 0.0 Pb 2.50±0.02 0.18±0.01 7.2 Mn 84.84±4.43 0.46±0.02 0.5 Fe 25.38±0.32 3.79±0.11 14.9 Mg 60233.62±1646.04 14.32±0.18 0.02 Ca 2074.03±113.36 24.1 1±0.42 1.2 Sr 22.29±0.11 0.18±0.01 0.8 Ba 2.91±0.18 0.07±0.01 2.4

Таблица 2 Результаты определения меди в водах г.Екатеринбурга методом атомно-абсорбционной спектроскопии с пламенной атомизацией с предварительным концентрированием сшитым N-2-сульфоэтилхитозаном Введено меди, мкг/л Найдено меди в водопроводной воде г.Екатеринбурга Введено меди, мкг/л Найдено меди в воде р. Исеть, г.Екатеринбург 0 43.3±2.3 0 12.1±0.2 30 74.5±2.5 10 21.1±0.7 60 101.1±3.3 20 31.6±0.1

Из полученных данных (табл.1) видно, что содержащиеся в питьевых и природных водах ионы металлов извлекаются сшитым N-2-сульфоэтилхитозаном со степенью замещения 0.5 не более чем на 10% (исключение составляет железо, степень извлечения 15%). Медь при этом извлекается на 100%, что подтверждается методом «введено-найдено» (табл.2). Таким образом, использование сшитого N-2-сульфоэтилхитозана со степенью замещения 0.5 для предварительного концентрирования ионов меди из природных и питьевых вод позволяет значительно упростить состав элюата по сравнению с исходной пробой, что позволяет увеличить эффективность концентрирования аналита. Кроме этого, проведение десорбции путем пропускания через патрон с сорбентом 0.1 моль/л раствора азотной кислоты позволяет сделать способ более экспрессным по сравнению с прототипом.

Похожие патенты RU2532922C1

название год авторы номер документа
СПОСОБ КОНЦЕНТРИРОВАНИЯ И ОПРЕДЕЛЕНИЯ МЕДИ, СВИНЦА И КАДМИЯ 2008
  • Татаева Сарижат Джабраиловна
  • Бюрнаева Ульзана Гамзаевна
  • Гасанова Зайнап Гаджиевна
RU2361660C1
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОНЦЕНТРАЦИИ МЕДИ 1992
  • Гончаров Б.В.
  • Гончарова Н.А.
  • Быцан Н.В.
  • Буринский С.В.
RU2013766C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАДИОНУКЛИДОВ СТРОНЦИЯ 1992
  • Спиваков Б.Я.
  • Петрухин О.М.
  • Раснецов Л.Д.
  • Малофеева Г.И.
  • Данилова Т.В.
  • Тузова А.М.
  • Раснецова Б.Е.
RU2037894C1
Способ определения полиорганосилоксанов методом атомно-абсорбционной спектрометрии высокого разрешения с непрерывным источником спектра в режиме электротермической атомизации проб 2021
  • Штин Татьяна Николаевна
  • Галашева Оксана Евгеньевна
  • Гурвич Владимир Борисович
RU2774152C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАДИОНУКЛИДОВ СТРОНЦИЯ В ПРИРОДНЫХ ОБЪЕКТАХ 1993
  • Петрухин О.М.
  • Спиваков Б.Я.
  • Малофеева Г.И.
  • Тузова А.М.
RU2069868C1
Способ атомно-эмиссионного анализа растворов 2019
  • Долгоносов Анатолий Михайлович
  • Хамизов Руслан Хажсетович
  • Колотилина Надежда Константиновна
  • Фокина Ольга Владимировна
RU2706720C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФЕНОЛА В ВОДНЫХ СРЕДАХ 2007
  • Груздев Иван Владимирович
  • Шапчиц Татьяна Николаевна
  • Кондратенок Борис Михайлович
RU2344417C1
Способ определения ароматических микробных метаболитов в форме фенилкарбоновых кислот в сыворотке крови 2017
  • Паутова Алиса Константиновна
  • Соболев Павел Дмитриевич
  • Ревельский Александр Игоревич
  • Белобородова Наталья Владимировна
RU2663571C1
НАНОТЕХНОЛОГИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ И КОЛИЧЕСТВЕННОГО СОДЕРЖАНИЯ РЕДКИХ И РАССЕЯННЫХ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В ГОРНЫХ ПОРОДАХ, РУДАХ И ПРОДУКТАХ ИХ ПЕРЕРАБОТКИ 2007
  • Олейникова Галина Андреевна
  • Панова Елена Геннадиевна
  • Шишлов Владимир Анатольевич
  • Русанова Лариса Ивановна
RU2370764C2
Способ определения железа в водных растворах 1989
  • Пилипенко Анатолий Терентьевич
  • Сафронова Валентина Григорьевна
  • Закревская Людмила Владимировна
SU1709195A1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ МЕДИ В ПРИРОДНЫХ И ПИТЬЕВЫХ ВОДАХ

Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии. При этом концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин. Элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л. Раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин. Способ позволяет повысить эффективность концентрирования меди и экспрессность определения меди в природных и питьевых водах. 2 табл., 1 пр.

Формула изобретения RU 2 532 922 C1

Способ определения меди в природных и питьевых водах, включающий концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии, отличающийся тем, что концентрирование меди проводят на сшитом N-2-сульфоэтилхитозане со степенью замещения 0.5 со скоростью пропускания пробы через патрон 1.0-2.0 мл/мин, а элюирование осуществляют раствором азотной кислоты с концентрацией 0.1 моль/л, при этом раствор азотной кислоты пропускают через патрон со скоростью 1.0-2.0 мл/мин.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532922C1

ЗЕМСКОВА Л.А
и др., Применение волокнистого хитозан-углеродного сорбента для предварительного концентрирования меди (II) при анализе природных вод, Заводская лаборатория
Диагностика материалов, 2009, т
Фальцовая черепица 0
  • Белавенец М.И.
SU75A1
Печь для сжигания твердых и жидких нечистот 1920
  • Евсеев А.П.
SU17A1
Гантель со сменным грузом 1928
  • Земоборовский В.А.
SU9746A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ РАСТВОРОВ 1999
  • Гладун В.Д.
  • Мелехина Л.А.
  • Лобанов Ф.И.
  • Андреева Н.Н.
RU2180959C2
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОНЦЕНТРАЦИИ МЕДИ 1992
  • Гончаров Б.В.
  • Гончарова Н.А.
  • Быцан Н.В.
  • Буринский С.В.
RU2013766C1

RU 2 532 922 C1

Авторы

Петрова Юлия Сергеевна

Неудачина Людмила Константиновна

Пестов Александр Викторович

Даты

2014-11-20Публикация

2013-03-27Подача