КАТАЛИТИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ АЦЕТАЛЬДЕГИДА ИЗ ЭТИЛОВОГО СПИРТА Российский патент 2014 года по МПК C07C29/74 C07C31/08 

Описание патента на изобретение RU2534363C2

Изобретение относится к способам обработки спирта путем каталитического окисления кислородом для удаления ацетальдегида и может быть использовано для очистки спирта в медицинской, химической, фармацевтической и пищевой промышленности.

Содержание этаналя (простейшего алифатического альдегида ацетальдегида) в воде по нормам СанПиН 2.1.4.1074-01 не должно превышать 0.2 мг/дм3. Основными способами удаления альдегидов являются сорбция, электрокаталитическое и фотокаталитическое окисление.

Хемосорбцию метаналя и этаналя осуществляют низкоосновными анионообменниками до предельно допустимой концентрации [Воронюк И.В., Елисеева Т.В., Селеменев В.Ф. Сорбция метаналя низкоосновным анионообменником./ Журнал физической химии. - 2010. - Т.84, №8. - С.1555-1560]. Однако возникает необходимость регенерации сорбента и последующей утилизации регенерата.

Электрокаталитически окисляют ацетальдегид в этиловом спирте на Pt (110) электроде, допированном осмием [Vinicius Del Colle, Germano Tremiliosi-Filho/ Electrochemical and spectroscopic studies of ethanol and acetaldehyde oxidation onto Pt(110) modified by osmium // Electrocatalysis, 2011, Vol.2, N. 4, P.285-296]. Ацетальдегид окисляется до оксида и диоксида углерода при низких степенях покрытия платинового электрода осмием, в то время как увеличение количества осажденного осмия на поверхности электрода приводит к возрастанию степени окисления этанола.

Известно, что каталитическая система, состоящая из фиксированного на силикагеле комплекса кобальта и ацетата меди, обеспечивает 80%-ное окисление ацетальдегида до уксусного ангидрида [Кузимина Р.И., Афонин А.В., Борисова С.В./ Гетерогенные катализаторы окисления ацетальдегида.// Известия Саратовского университета, Сер. Химия. Биология. Экология. Вып.2, Т.7. 2007]. Однако возникает необходимость последующего удаления продукта неполного окисления.

Эффективным в реакции фотокаталитического окисления этаналя при комнатной температуре является композитный материал ТiO2-цеолит. Газообразный ацетальдегид, адсорбированный цеолитом, непрерывно фотокаталитически окисляется на ТiO2 под действием УФ-облучения. Адсорбционная способность данного композита по отношению к ацетальдегиду превышает способность чистого диоксида титана и традиционных адсорбентов [Н. Ichiura, Т. Kitaoka, Н. Tanaka/ Preparation of composite TiO2-zeolite sheets using a papermaking technique and their application to environmental improvement Part I Removal of acetaldehyde with and without UV irradiation // Journal of Materials Science, 2002, Vol.37, N.14, P.2937-2941].

Таким образом, удаление ацетальдегида из этилового спирта при Т=20-25°С и атмосферном давлении ранее известными способами возможно только в присутствии дорогостоящих благородных металлов, а для достижения высокой степени окисления применяются металлоксидные катализаторы, работающие при высокой температуре.

Задача данного изобретения состоит в разработке простого и недорогого способа удаления простейших алифатических альдегидов (ацетальдегида) из этилового спирта, позволяющего достичь максимальной степени окисления в мягких условиях (при комнатной температуре и нормальном давлении), с использованием метода каталитического окисления кислородом.

Технический результат изобретения заключается в удалении до 60-90% от исходной концентрации ацетальдегида из этилового спирта в при Т=20-25°С и атмосферном давлении простым в технологическом исполнении и экономичным способом.

Технический результат достигается тем, что в способе удаления ацетальдегида из этилового спирта в мягких условиях путем приведения его в контакт с катализатором в качестве катализатора используется нанокомпозитный материал серебро-анионообменник, и окисление осуществляется при постоянном перемешивании потоком кислорода.

При этом катализатор получают химическим осаждением серебра в матрицу полимера, содержащего фиксированные положительно заряженные группы в виде четвертичного азота. Заряд групп компенсируется ионами гидроксила. Химическое осаждение серебра в анионообменную матрицу проводят путем последовательного пропускания через анионообменную смолу раствора нитрата серебра, промывки водой, пропускания щелочного раствора восстановителя и последующей промывки водой [РФ №2385293 СО1G 5/00, 2006]. Готовый катализатор обрабатывают кислородом для предварительной адсорбции кислорода на поверхности серебряных частиц.

Регенерацию катализатора проводят, пропуская через него слабо концентрированный раствор щелочи, насыщенный кислородом.

Достоинством этого способа является простое извлечение катализатора из реакционной среды и дальнейшее многократное его использование без потери каталитической способности.

Продукты неполного окисления альдегидов (карбоновые кислоты) могут быть удалены сорбцией фиксированными заряженными группами матрицы полимера.

Пример 1. В способе удаления ацетальдегида из этилового спирта каталитическое окисление осуществляют, приводя в контакт катализатор с раствором ацетальдегида (в соотношении 1:10) в статических условиях при постоянном перемешивании потоком кислорода.

Нанокомпозитный катализатор серебро-катионообменник синтезируют следующим способом: осаждают наночастицы серебра на поверхности гелевого сульфокатионообменного полимера КУ-2-8, ионообменная емкость которого 1,8 мг-экв/см3. Для этого вводят ионы серебра методом ионообменного насыщения из нитрата серебра концентрацией 0,1 М (5 объемов раствора на 1 объем смолы) [РФ №2385293, СО1G 5/00]. После промывки дистиллированной водой восстанавливают частицы серебра, пропуская щелочной раствор гидразина. В результате происходит поверхностное осаждение дисперсного серебра и одновременное переведение функциональных групп катионообменной матрицы в Na+ форму. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц от 70 до 85 нм и содержанием серебра 0,4 мг-экв на 1 см3 набухшего композита. Для предварительной адсорбции кислорода на поверхности серебряных наночастиц готовый композит насыщали кислородом в течение 30 мин.

С целью регенерации гидроксильной ионной формы катализатора через слой композита пропускают в динамических условиях 0.005 М раствор щелочи из расчета 100 мл раствора щелочи на 1 см3 композита, далее дистиллированную воду для промывки. Для предварительной адсорбции кислорода на поверхности серебряных частиц композит обрабатывают кислородом.

В результате 30 минут каталитического окисления концентрация ацетальдегида в растворе уменьшается от 4,14 ммоль/л до 3,05 ммоль/л (степень полноты окисления 26%). За счет взаимодействия продукта неполного окисления ацетальдегида - уксусной кислоты - с гидроксил-ионами матрицы катализатора происходит, во-первых, нейтрализация кислоты, а во-вторых, сорбция ацетат-аниона композитом за счет наличия высокой концентрации фиксированных положительно заряженных центров в матрице. Таким образом, даже при неполном окислении ацетальдегида pH раствора не изменяется.

Пример 2. При удалении ацетальдегида из этилового спирта каталитическое окисление осуществляют согласно способу из примера 1.

Нанокомпозитный катализатор серебро-катионообменник синтезируют следующим способом: осаждают наночастицы серебра в матрицу макропористого сульфокатионообменного полимера КУ-23, ионообменная емкость которого 1,3 мг-экв/см3. Для этого вводят ионы серебра методом ионообменного насыщения из нитрата серебра концентрацией 0,1 М (5 объемов раствора на 1 объем смолы). После промывки дистиллированной водой восстанавливают частицы серебра, пропуская щелочной раствор гидразина [РФ №2385293, СО1G 5/00]. В результате происходит поверхностное осаждение дисперсного серебра и одновременное переведение функциональных групп катионообменной матрицы в Na+ форму. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц от 250 до 270 нм и содержанием серебра 0,8 мг-экв на 1 см3 набухшего композита.

Способ предварительной обработки катализатора и регенерации описан в примере 1.

В результате 30-ти минут каталитического окисления концентрация ацетальдегида в растворе уменьшается от 4,14 ммоль/л до 3,16 ммоль/л (24%), после двух часов сокращается до 2,5 ммоль/л (40%), а после пяти часов до 1,96 ммоль/л (53%).

Пример 3. При удалении ацетальдегида из этилового спирта каталитическое окисление осуществляют согласно способу из примера 1.

Нанокомпозитный катализатор серебро-анионообменник синтезируют следующим способом: осаждают наночастицы серебра на поверхности гелевого аминоанионообменного полимера АВ-17-8, ионообменная емкость которого 1,8 мг-экв/см3. Для этого вводят ионы серебра методом ионообменного насыщения из нитрата серебра концентрацией 0,1 М (5 объемов раствора на 1 объем смолы). После промывки дистиллированной водой восстанавливают частицы серебра, пропуская щелочной раствор гидразина [РФ №2385293, СО1G 5/00]. В результате происходит поверхностное осаждение дисперсного серебра и одновременное переведение функциональных групп анионообменной матрицы в ОН- форму. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц от 60 до 100 нм и содержанием серебра 0,2 мг-экв на 1 см3 набухшего композита.

Способ предварительной обработки катализатора и регенерации описан в примере 1.

В результате 30-ти минут каталитического окисления концентрация ацетальдегида в растворе уменьшается от 4,14 ммоль/л до 2,9 ммоль/л (%), после двух часов сокращается до 2,7 ммоль/л (35%), а после пяти часов до 1,33 ммоль/л (68%).

Пример 4. При удалении ацетальдегида из этилового спирта каталитическое окисление осуществляют согласно способу из примера 1.

Нанокомпозитный катализатор серебро-анионообменник синтезируют следующим способом: осаждают наночастицы серебра на поверхности пористого аминоанионообменного полимера АВ-17-2П, ионообменная емкость которого 2,5 мг-экв/см3. Для этого вводят ионы серебра методом ионообменного насыщения из нитрата серебра концентрацией 0,1 М (5 объемов раствора на 1 объем смолы). После промывки дистиллированной водой восстанавливают частицы серебра, пропуская щелочной раствор гидразина [РФ №2385293, CO1G 5/00]. В результате происходит поверхностное осаждение дисперсного серебра и одновременное переведение функциональных групп анионообменной матрицы в ОН" форму. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц от 30 до 50 нм и содержанием серебра 1,34 мг-экв на 1 см3 набухшего композита.

Способ предварительной обработки катализатора и регенерации описан в примере 1.

В результате 30-ти минут каталитического окисления концентрация ацетальдегида в растворе уменьшается от 4,14 ммоль/л до 1,5 ммоль/л (64%), после двух часов сокращается до 0,25 ммоль/л (94%), а после пяти часов до 0,08 ммоль/л (98%).

Похожие патенты RU2534363C2

название год авторы номер документа
КАТАЛИТИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ ФОРМАЛЬДЕГИДА ИЗ ВОДНЫХ РАСТВОРОВ 2012
  • Сакардина Екатерина Александровна
  • Золотухина Екатерина Викторовна
  • Кравченко Тамара Александровна
RU2548093C2
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ НАНОКОМПОЗИТОВ, СОДЕРЖАЩИХ ПЛАТИНОВЫЕ МЕТАЛЛЫ 2014
  • Хамизов Руслан Хажсетович
  • Конов Магомет Абубекирович
  • Бавижев Мухамед Данильевич
  • Цыганов Эдуард Николаевич
RU2550472C1
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА 2008
  • Золотухина Екатерина Викторовна
  • Кравченко Тамара Александровна
  • Пешков Сергей Владимирович
RU2385293C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО КАТАЛИТИЧЕСКОГО МАТЕРИАЛА В ВИДЕ ПОЛЫХ СФЕР С ИСПОЛЬЗОВАНИЕМ МИКРОВОЛН 2022
  • Халипова Ольга Сергеевна
  • Кузнецова Светлана Анатольевна
RU2792611C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА 2008
  • Кравченко Тамара Александровна
  • Чайка Михаил Юрьевич
  • Булгакова Наталья Сергеевна
  • Полянский Лев Николаевич
RU2355471C1
Полиэтилентерефталатная полимерная композиция и способ ее получения 2015
  • Микитаев Абдулах Касбулатович
  • Хаширова Светлана Юрьевна
  • Мусов Исмел Вячеславович
  • Жанситов Азамат Асланович
  • Мамхегов Рустам Мухамедович
  • Шабаев Альберт Семенович
RU2610772C2
Способ получения золото-углеродного наноструктурированного композита 2016
  • Захаров Юрий Александрович
  • Сименюк Галина Юрьевна
  • Пугачев Валерий Михайлович
  • Манина Татьяна Сергеевна
  • Барнаков Чингиз Николаевич
  • Пузынин Андрей Владимирович
  • Исмагилов Зинфер Ришатович
RU2613681C1
Нанокомпозит серебра на основе конъюгата арабиногалактана и флавоноидов, обладающий антимикробным и противоопухолевым действием, и способ его получения 2015
  • Погодаева Наталья Николаевна
  • Кузнецов Сергей Викторович
  • Смирнова Екатерина Александровна
  • Карнаухова Ольга Геннадьевна
  • Силкин Иван Иванович
  • Лозовская Евгения Александровна
  • Сухов Борис Геннадьевич
  • Злобин Владимир Игоревич
  • Трофимов Борис Александрович
RU2611999C2
Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов 2015
  • Сухов Борис Геннадьевич
  • Ганенко Татьяна Васильевна
  • Погодаева Наталья Николаевна
  • Кузнецов Сергей Викторович
  • Силкин Иван Иванович
  • Лозовская Евгения Александровна
  • Шурыгин Михаил Геннадьевич
  • Шурыгина Ирина Александровна
  • Трофимов Борис Александрович
RU2614363C2
ОДНОКАМЕРНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ И СПОСОБ ПОЛУЧЕНИЯ ПРОВОДЯЩЕГО НАНОКОМПОЗИТНОГО МАТЕРИАЛА ДЛЯ НЕГО 2013
  • Варфоломеев Андрей Евгеньевич
RU2555859C2

Реферат патента 2014 года КАТАЛИТИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ АЦЕТАЛЬДЕГИДА ИЗ ЭТИЛОВОГО СПИРТА

Изобретение относится к способу обработки спирта путем каталитического окисления кислородом в мягких условиях для удаления ацетальдегида и может быть использовано для очистки спирта в медицинской, химической, фармацевтической и пищевой промышленности. При этом в качестве катализатора используется нанокомпозитный материал серебро-ионообменник, а окисление осуществляют при постоянном перемешивании потоком кислорода. Изобретение позволяет простым и экономичным способом удалить до 60-90% от исходной концентрации ацетальдегида. 4 пр.

Формула изобретения RU 2 534 363 C2

Способ удаления ацетальдегида из этилового спирта в мягких условиях путем приведения его в контакт с катализатором, отличающийся тем, что в качестве катализатора используется нанокомпозитный материал серебро-ионообменник, а окисление осуществляют при постоянном перемешивании потоком кислорода.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534363C2

СПОСОБ ОЧИСТКИ ЭТИЛОВОГО СПИРТА 2011
  • Щелкунов Сергей Анатольевич
  • Малышев Олег Анатольевич
RU2451661C1
Vinicius DEl Colle et al, Electrochemical and Spectroscopic Studies of Ethanol and Acetaldehyde Oxidation Onto Pt(110) Modified by Osmium
Electrocalalysis, 2011, 2(4), 285-296
СПОСОБ ОЧИСТКИ ЭТИЛОВОГО СИНТЕТИЧЕСКОГО ТЕХНИЧЕСКОГО СПИРТА ОТ ПРИМЕСЕЙ АЛЬДЕГИДОВ И КЕТОНОВ 1995
  • Крупнов В.К.
  • Вальшин Г.К.
  • Ильин А.В.
  • Афанасьев М.М.
RU2102371C1
JP 5339183A, 21.12.1993.

RU 2 534 363 C2

Авторы

Сакардина Екатерина Александровна

Золотухина Екатерина Викторовна

Кравченко Тамара Александровна

Никитина Светлана Юрьевна

Даты

2014-11-27Публикация

2012-06-25Подача