Изобретение относится к способам обработки воды путем каталитического окисления кислородом для удаления формальдегида и может быть использовано для очистки сточных вод в нефтехимической, медицинской, химической, фармацевтической и пищевой промышленности.
Содержание метаналя (простейшего алифатического альдегида формальдегида) в воде по нормам СанПиН 2.1.4.1074-01 не должно превышать 0.05 мг/дм3. Основными способами удаления альдегидов являются сорбция, каталитическое и фотокаталитическое окисление.
Хемосорбцию метаналя и этаналя осуществляют низкоосновными анионообменниками до предельно допустимой концентрации [Воронюк И.В., Елисеева Т.В., Селеменев В.Ф. Сорбция метаналя низкоосновным анионообменником / Журнал физической химии. - 2010. - Т.84, №8. - С.1555-1560]. Однако возникает необходимость регенерации сорбента и последующей утилизации регенерата.
Известно, что наиболее действенным методом является каталитическое окисление. Окисление метаналя до муравьиной кислоты ведут на гетерогенных катализаторах V2O5/TiO2 при температуре 100-140°С. [Попова Г.Я., Чесалов Ю.А., Андрушкевич Т.В. Гетерогенное селективное окисление формальдегида на оксидных катализаторах. III. Фурье-ИК-спектроскопическое исследование in situ поверхностных соединений формальдегида на V-Ti-O-катализаторе. Влияние кислорода / Кинетика и катализ. 200. Т.41, №4. С.601-607]. Показано, что присутствие кислорода в реакционной смеси увеличивает выход продукта неполного окисления - муравьиной кислоты.
Полное окисление высококонцентрированных растворов метаналя возможно при помощи оксидных нанесенных катализаторов CuO-ZnO/Al2O3. Недостаток данного метода - высокая реакционная температура 160-220°С [Adria'n M.Т. Silva, Rosa M. Quinta-Ferreira, Janez Levee. Catalytic and noncatalytic wet oxidation of formaldehyde, a novel kinetic model / Ind. Eng. Chem. Res. 2003, 42, 5099-5108].
Отличной каталитической способностью обладает Au/CeO2 катализатор, отличающийся высокопористой структурой [Jun Zhang, Ying Jin, Changyan Li, Yuenian Shen, Li Han, Zhongxue Hu, Xiaowei Di, Zhiliang Liu. Creation of three-dimensionally ordered macroporous Au/СеО2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation / Journal of Physics D: Applied Physics. Vol.39. N.16]. Степень окисления метаналя с использованием данного катализатора составила 100% при температуре 75°С.
Снижение температуры реакции окисления метаналя до 20°С достигается при использовании дорогостоящих катализаторов, содержащих благородные металлы: Pt/TiO2, Rh/TiO2, Pd/TiO2, Au/TiO2 [Changbin Zhang, Hong He. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature / Catalysis Today. V. 126. 2007. P.345-350]. Однако степень полноты окисления метаналя в присутствии данных катализаторов составляет лишь 20%.
Известно об использовании более дешевых и эффективных серебряных катализаторов, нанесенных на МСМ-41, SBA-15, SiO2 [Dan Chen, Zhenping Qu, Shijin Shen, Xinyong Li, Yong Shi, Yi Wang, Qiang Fu, Jingjing Wu. Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde / Catalysis Today V.175, 2011, P.338-345]. Однако полное окисление метаналя кислородом на данных катализаторах возможно при температуре 50-500°С.
Процесс каталитического окисления формальдегида и других органических соединений в водных растворах с соединениями хлора, присутствующих, в основном, в виде хлорноватой кислоты, проистекает при комнатной температуре и рН 5,5 в присутствии кобальтового катализатора. (US 5244581, МПК C02F 1/72; C02F 1/76, 14.09.1993).
В АС 552309 (МПК C02F 1/72, 30.03.1977) при очистке сточных вод от формальдегида их обрабатывают перекисью водорода, добавляемой к стоку в присутствии платинированного графита, регенерацию каталитической способности которого проводят катодной и анодной поляризацией в растворе 0,1 н. H2SO4 в течение 20-30 мин один раз в неделю. Степень очистки достигает 96-98%. Количество подаваемой перекиси водорода должно быть строго эквивалентно количеству формальдегида в водном растворе.
Более низкие реакционные температуры достигаются при окислении метаналя кислородом в присутствии композитного катализатора Ag/Се2О [Seiichiro Imamura, Daisuke Uchihori, Kazunori Utani. Oxidative decomposition of formaldehyde on silver-cerium composite oxide catalyst / Catalysis Letters 24 (1994) 377-384]. Отмечено, что при использовании композита, в котором компоненты Ag и Се2О находятся в соотношении 20:80, метаналь окисляется до промежуточных соединений на 80% от исходной концентрации при температуре 100°С. Дальнейшее окисление до CO2 возможно при поддержании температуры 150°С.
Таким образом, удаление формальдегида из водных растворов при Т=20-25°С и атмосферном давлении ранее известными способами возможно только в присутствии дорогостоящих благородных металлов. А для достижения высокой степени окисления применяются оксидные катализаторы, работающие при высокой температуре.
Задача данного изобретения состоит в разработке простого и недорогого способа удаления простейших алифатических альдегидов (формальдегидов) из водных растворов, позволяющего достичь максимальной степени окисления в мягких условиях (при комнатной температуре и нормальном давлении), с использованием метода каталитического окисления кислородом.
Технический результат изобретения заключается в удалении до 60-80% от исходной концентрации формальдегида из водных растворов в при Т=20-25°С и атмосферном давлении простым в технологическом исполнении и экономичным способом.
Технический результат достигается тем, что в способе удаления формальдегида из водных растворов в мягких условиях путем приведения его в контакт с катализатором в качестве катализатора используется нанокомпозитный материал серебро - анионообменник и окисление осуществляется при постоянном перемешивании потоком кислорода.
При этом катализатор получают химическим осаждением серебра в матрицу полимера, содержащего фиксированные положительно заряженные группы в виде четвертичного азота. Заряд групп компенсируется ионами гидроксила. Химическое осаждение серебра в анионообменную матрицу проводят путем последовательного пропускания через анионообменную смолу раствора нитрата серебра, промывки водой, пропускания щелочного раствора восстановителя и последующей промывки водой [РФ №2385293, C01G 5/00, 2006]. Готовый катализатор обрабатывают насыщенной кислородом водой для предварительной адсорбции кислорода на поверхности серебряных частиц.
Регенерацию катализатора проводят пропуская через него слабоконцентрированный раствор щелочи, насыщенный кислородом.
Достоинством этого способа является простое извлечение катализатора из реакционной среды и дальнейшее многократное его использование без потери каталитической способности.
Продукты неполного окисления альдегидов (карбоновые кислоты) могут быть удалены сорбцией фиксированными заряженными группами матрицы полимера.
Пример 1. В способе удаления формальдегида из водных растворов каталитическое окисление осуществляют приводя в контакт катализатор с раствором формальдегида (в соотношении 1:10) в статических условиях при постоянном перемешивании потоком кислорода.
Нанокомпозитный катализатор серебро - анионообменник синтезируют следующим способом: осаждают наночастицы серебра на поверхности гелевого аминоанионообменного полимера АВ-17-8, ионообменная емкость которого 1,8 мг·экв/см3. Для этого вводят ионы серебра методом ионообменного насыщения из нитрата серебра концентрацией 0,1 М (5 объемов раствора на 1 объем смолы) [РФ №2385293, C01G 5/00]. После промывки дистиллированной водой восстанавливают частицы серебра, пропуская щелочной раствор гидразина. В результате происходит поверхностное осаждение дисперсного серебра и одновременное переведение функциональных групп анионообменной матрицы в ОН--форму. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц 60-140 нм и содержанием серебра 0,2 мг·экв на 1 см набухшего композита. Для предварительной адсорбции кислорода на поверхности серебряных наночастиц готовый композит насыщали кислородом в течение 30 мин.
С целью регенерации гидроксильной ионной формы катализатора через слой композита пропускают в динамических условиях 0.005 М раствор щелочи из расчета 100 мл раствора щелочи на 1 см3 композита, далее дистиллированную воду для промывки. Для предварительной адсорбции кислорода на поверхности серебряных частиц композит обрабатывают кислородом.
В результате 30-ти минут каталитического окисления концентрация формальдегида в растворе уменьшается от 0,6 ммоль/л до 0,4 ммоль/л (33%), после двух часов сокращается до 0,23 ммоль/л (62%), а после пяти часов до 0,14 ммоль/л (77%). Многократное повторение этой операции (6-48 раз) с одним и тем же образцом катализатора не приводит к потере его каталитической активности. За счет взаимодействия продукта неполного окисления формальдегида - муравьиной кислоты - с гидроксил-ионами матрицы катализатора происходит, во-первых, нейтрализация кислоты, а во-вторых, сорбция формиат-аниона композитом за счет наличия высокой концентрации фиксированных положительно заряженных центров в матрице. Таким образом, даже при неполном окислении формальдегида рН раствора не изменяется.
Пример 2. Каталитическое окисление и синтез нанокомпозитного катализатора серебро - анионообменника осуществляют согласно примеру 1. Восстановителем в данном случае служит щелочной раствор борогидрида натрия. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц 60 нм и емкостью по серебру 0,2 мг·экв/см3. Способ предварительной обработки катализатора и регенерации описан в примере 1.
В результате 30 минут каталитического окисления концентрация формальдегида в растворе уменьшается от 0,6 ммоль/л до 0,2 ммоль/л (66,7%). Важно, что в присутствии данного катализатора достигается такая же степень удаления метаналя в результате 30 мин окисления, как в предыдущем примере через 2 часа.
Пример 3. Каталитическое окисление и синтез нанокомпозитного катализатора серебро - анионообменника осуществляют согласно примеру 1. В качестве аминоанионообменной матрицы берут пористый полимер АВ-17-2П, ионообменная емкость которого 2,5 мг·экв/см3. Синтезированный нанокомпозит характеризуется размером агрегатов металлических наночастиц 30-60 нм и емкостью по серебру 1,34 мг·экв/см3. Способ предварительной обработки катализатора и регенерации описан в примере 1.
В результате 30 минут каталитического окисления концентрация формальдегида в растворе уменьшается от 0,6 ммоль/л до 0,3 ммоль/л (50%), после двух часов сокращается до 0,25 ммоль/л (58%), а после пяти часов до 0,15 ммоль/л (75%).
название | год | авторы | номер документа |
---|---|---|---|
КАТАЛИТИЧЕСКИЙ СПОСОБ УДАЛЕНИЯ АЦЕТАЛЬДЕГИДА ИЗ ЭТИЛОВОГО СПИРТА | 2012 |
|
RU2534363C2 |
КАТАЛИЗАТОР И СПОСОБ ОКИСЛЕНИЯ ФОРМАЛЬДЕГИДА | 2003 |
|
RU2254920C1 |
Способ получения модифицированного фотокатализатора на основе диоксида титана | 2017 |
|
RU2640811C1 |
КАТАЛИЗАТОР И СПОСОБ ОКИСЛЕНИЯ ФОРМАЛЬДЕГИДА | 2004 |
|
RU2264257C1 |
Способ приготовления металл-нанесенного катализатора для процесса фотокаталитического окисления монооксида углерода | 2016 |
|
RU2637120C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ ВОДЫ ОТ ЗАГРЯЗНЕНИЯ УГЛЕВОДОРОДАМИ | 2012 |
|
RU2479349C1 |
КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ, СОДЕРЖАЩИХ ЛЕТУЧИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ, СОДЕРЖАЩИХ ЛЕТУЧИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ | 2012 |
|
RU2490062C1 |
Способ изготовления индикаторных микрокапсул с использованием магнитных и плазмонных наночастиц | 2020 |
|
RU2758098C1 |
ОДНОКАМЕРНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ И СПОСОБ ПОЛУЧЕНИЯ ПРОВОДЯЩЕГО НАНОКОМПОЗИТНОГО МАТЕРИАЛА ДЛЯ НЕГО | 2013 |
|
RU2555859C2 |
ГАЗОЧУВСТВИТЕЛЬНЫЙ СЛОЙ ДЛЯ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА В ВОЗДУХЕ, СЕНСОР С ГАЗОЧУВСТВИТЕЛЬНЫМ СЛОЕМ И ДЕТЕКТОР ДЛЯ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА | 2019 |
|
RU2723161C1 |
Изобретение относится к способам удаления формальдегида путем каталитического окисления кислородом и может быть использовано для очистки сточных вод в нефтехимической, медицинской, химической и фармацевтической промышленности. Способ удаления формальдегида из водных растворов при комнатной температуре и атмосферном давлении включает приведение формальдегида в контакт с катализатором и его окисление кислородом. В качестве катализатора используется нанокомпозитный материал серебро - высокоосновный анионообменник в ОН--форме. Окисление осуществляют за 0,5-5 ч. Изобретение позволяет удалить до 60-80% от исходной концентрации формальдегида из водных растворов при Т=20-25°С и атмосферном давлении простым и экономичным способом. 3 пр.
Способ удаления формальдегида из водных растворов при комнатной температуре и атмосферном давлении в результате окисления кислородом путем приведения его в контакт с катализатором, отличающийся тем, что в качестве катализатора используется нанокомпозитный материал серебро - высокоосновный анионообменник в ОН--форме, а реакцию осуществляют за 0.5-5 ч.
КАТАЛИЗАТОР И СПОСОБ ОКИСЛЕНИЯ ФОРМАЛЬДЕГИДА | 2003 |
|
RU2254920C1 |
КАТАЛИЗАТОР И СПОСОБ ОКИСЛЕНИЯ ФОРМАЛЬДЕГИДА | 2003 |
|
RU2254920C1 |
Г | |||
Б | |||
СЕРГЕЕВ, Нанохимия, Москва, Издательство МГУ, 2003, с | |||
Фотореле для аппарата, служащего для передачи на расстояние изображений | 1920 |
|
SU224A1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФОРМАЛЬДЕГИДА | 2008 |
|
RU2358799C1 |
ПОВЕРХНОСТНЫЙ ПРИВОД ПОГРУЖНОГО ВИНТОВОГО НАСОСА | 1998 |
|
RU2145678C1 |
US 20030082133 A1, 01.05.2003. |
Авторы
Даты
2015-04-10—Публикация
2012-06-25—Подача