СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ Российский патент 2014 года по МПК C23C4/04 

Описание патента на изобретение RU2534714C2

Изобретение относится к области порошковой металлургии и может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок, том числе камер сгорания (КС) жидкостных ракетных двигателей (ЖРД), от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива путем нанесения методом плазменного напыления эрозионностойких теплозащитных покрытий (ЭТЗП).

Одной из актуальных задач, связанных с повышением работоспособности плазменных теплозащитных покрытий, является задача увеличения их адгезионной прочности и термостойкости, что обеспечивает работоспособность теплонапряженных узлов в условиях многоразового воздействия высокотемпературных газовых потоков продуктов сгорания топлива.

Известен способ получения ЭТЗП с повышенными значениями отрывной прочности и термостойкости (см. «Порошковая металлургия и напыленные покрытия». Под редакцией Б.О. Митина, М.: Металлургия, 1987 г., стр.560), в котором повышение технических характеристик плазменных покрытий достигается за счет добавок в покрытие пластичного материала, например нихрома, и использование между основой и покрытием переходных слоев, имеющих переменное, уменьшающееся от подложки к основному покрытию содержание пластичной добавки. Такими слоями, например, могут быть:

- 1-й слой 95-65% вес. NiCr ÷ 5÷35% вес. ZrO2;

- 2-й слой 65-35% вес. NiCr ÷ 35÷65% вес. ZrO2;

- 3-й слой 5-35% вес. NiCr ÷ 95÷65% вес. ZrO2.

Таким образом, в данном способе реализуется решение по созданию зоны фазового перехода от подложки к покрытию.

Описанный способ позволяет повысить адгезионную прочность ЭТЗП до величины σA≈7,0÷8,0 МПа и получить термостойкость n≈8÷10 циклов. Недостатком способа является то, что приведенные характеристики не обеспечивают работоспособность в условиях воздействия высокотемпературных газовых потоков КС ЖРД перспективных образцов ракетной техники. Недостатком способа также являются значительные трудности в обеспечении стабильности и воспроизводимости нанесения многослойных покрытий на сложные внутренние поверхности КС ракетных двигателей. Кроме того, нанесение покрытий за несколько проходов нетехнологично и ухудшает когезионные характеристики пакета теплозащитного покрытия в целом.

Известен также способ получения ЭТЗП (см. патент РФ на изобретение №2283363), принятый за прототип, в котором повышение характеристик плазменных покрытий достигается за счет напыления подслоя нихрома и керметной композиции, содержащей 50÷80 масс.% диоксида циркония и 50÷20 масс.% нихрома, при этом керметную композицию готовят из порошков диоксида циркония и нихрома с размером частиц 10÷40 мкм и 40÷100 мкм соответственно, а ее подачу в плазменную струю осуществляют под срез сопла плазматрона в направлении его перемещения относительно напыляемой поверхности, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид кальция, содержание которого составляет величину 4÷6% масс.

Данный способ позволяет за один проход формировать зону фазового перехода от металлического подслоя к исходному составу ЭТЗП и, как следствие, повысить адгезионную прочность теплозащитных покрытий и их термостойкость до средних значений σA≈12,0÷17,0 МПа и n≈0÷30 циклов.

Приведенные характеристики ЭТЗП достигаются при подводимой к плазмотрону мощности N≈32÷34 кВт, дистанции напыления L≈(100±10) мм и угле напыления θ≈(90±5)°.

Недостатком способа является то, что в случае нанесения ЭТЗП на КС перспективных ЖРД, имеющих малый диаметр критического сечения, необходимо снижать подводимую к плазменному распылителю мощность, увеличивать дистанцию напыления при малых углах оси плазменной струи к напыляемой поверхности, что приводит к снижению степени проплавления порошковых частиц композиционных смесей, уменьшению их кинетической энергии и, как следствие, к снижению уровня свойств ЭТЗП в целом.

Техническим результатом настоящего изобретения является повышение характеристик плазменных ЭТЗП, формируемых из механических керметных смесей методом плазменного напыления при пониженных значениях энтальпии плазменной струи, при увеличенной дистанции напыления под малыми углами.

Указанный технический результат достигается тем, что в способе, включающем плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 масс.% диоксида циркония и 50÷20 масс.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, согласно изобретению в качестве никельсодержащей металлической составляющей керметной композиции используют порошок никеля, плакированный алюминием с содержанием алюминия 10÷15 масс.% дисперсностью 63÷125 мкм, при этом в качестве стабилизирующей добавки в порошке диоксида циркония используют оксид иттрия, содержание которого составляет величину 8÷12 масс.%.

Разработанный способ получения покрытий обеспечивает повышение характеристик ЭТЗП за счет дополнительного выделения тепла в пятне напыления в ходе экзотермической реакции образования алюминидов NiAl, Ni3Al:

Полнота протекания реакций (1) и (2) зависит от температуры и времени нахождения напыляемых частиц в реакционном состоянии. Максимальный тепловой эффект реакций достигается в диапазоне температур от 600 до 800°C и зависит от способа изготовления композиционного порошка.

Энтальпия напыляемых частиц при завершении реакции может достигать 150÷300 кДж/моль, что позволяет значительно повысить адгезионные и когезионные характеристики ЭТЗП.

Сущность заявленного способа поясняется таблицей, в которой приведены характеристики ЭТЗП.

Сущность заявленного способа будет ясна из приведенного ниже примера.

Пример

На образцы из медного сплава БрХ08 наносили методом плазменного напыления покрытия, состоящие из нихромового подслоя и кермета. Кермет готовили двух составов: 80 масс.% ZrO2+20 масс.% (Ni-Al) и 50 масс.% ZrO2+50 масс.% (Ni-Al).

Использовали порошок диоксида циркония грануляцией 10-40 мкм, стабилизированный 8÷12 масс.% оксида иттрия (Y2O3), и порошок никеля, плакированный алюминием, грануляции 63÷125 мкм. Содержание алюминия в порошке никеля составляло величину 10÷15 масс.%.

Выбор в качестве стабилизирующей добавки Y2O3 с указанным массовым содержанием обусловлен необходимостью обеспечения полной стабилизации ZrO2 с сохранением кубической модификации вплоть до комнатной температуры.

Диоксид циркония с содержанием оксида кальция (CaO) 4÷6 масс %, а также ZrO2 с содержанием стабилизирующей добавки Y2O3 менее 8 масс.% является частично стабилизированным (содержится до 10% моноклинной фазы), что отрицательно сказывается на термостойкости ЭТЗП.

Экспериментально было установлено, что увеличение содержания стабилизирующей добавки Y2O3 более 12 масс.% не приводит к повышению уровня служебных характеристик ЭТЗП, однако стоимость порошка ZrO2 при этом существенно возрастает.

Также экспериментально было получено, что при содержании алюминия в порошке никеля 20 масс.% и более имеет место снижение термостойкости ЭТЗП, которое обусловлено, по-видимому, увеличением количества хрупких алюминидов в покрытии.

Гранулометрический размер частиц порошка никеля, плакированного алюминием 63÷125 мкм определен на основании расчетных исследований по изучению нагрева и траектории движения порошковых частиц в плазменной струе с целью получения неравномерного распределения компонентов механической керметной смеси по сечению плазменной струи и, как следствие, формированию зоны фазового перехода.

Подачу механической керметной смеси в плазменную струю осуществляли под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности.

Режим напыления: подводимая к плазмотрону мощность N=21,6 кВт (ток дуги Jд=360 А, напряжение на дуге Uд=60 В); дистанция напыления L=150 мм; угол напыления θ=45°.

Для получения сравнительных данных параллельно проводили нанесение керметных теплозащитных покрытий на образцы из того же медного сплава известным способом.

Контроль фазового состава покрытий и распределение металлической составляющей по толщине выполняли металлографическим способом.

Определение адгезионной прочности и термостойкости покрытий осуществляли в соответствии с требованиями методик, изложенных в ОС 92-1406-68 «Покрытия эрозионностойкие неметаллические».

Полученные физико-механические и теплофизические свойства покрытий сведены в таблицу.

Как следует из таблицы, использование предложенного способа получения эрозионностойких теплозащитных покрытий по сравнению с известным решением позволяет при указанных выше режимах (подводимая к плазмотрону мощность, дистанция и угол напыления) повысить адгезионную прочность и термостойкость ЭТЗП в 1,5÷2 раза за счет дополнительного выделения тепла в пятне напыления в ходе экзотермической реакции при формировании зоны фазового перехода.

Содержание ZrO2 в смеси, масс.% Способ нанесения покрытий Толщина покрытия, мкм Стабилизирующая добавка, масс.% Содержание алюминия, масс.% Адгезионная прочность,
кгс/см2
Термостойкость, циклы
80 Предложенный 120÷150 8÷12% Y2O3 10÷15 120÷150 17÷20 Известный 120÷150 4÷6% CaO - 70÷80 8÷12 50 Предложенный 120÷150 8÷12% Y2O3 10÷15 150÷180 25÷30 Известный 120÷150 4÷6% CaO - 90÷100 15÷18

Похожие патенты RU2534714C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ 2012
  • Сайгин Владимир Валентинович
  • Сафронов Александр Викторович
  • Тишина Галина Николаевна
  • Полежаева Екатерина Михайловна
RU2499078C1
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННО СТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ 2003
  • Сайгин Владимир Валентинович
  • Воеводин Вячеслав Петрович
  • Зарубова Наталья Ивановна
  • Заев Эдуард Федорович
  • Кольцов Владимир Иванович
  • Курындин Анатолий Петрович
  • Педан Сергей Владимирович
  • Самороковский Федор Васильевич
  • Чурсин Игорь Германович
RU2283363C2
Способ получения эрозионно-стойких теплозащитных покрытий 2018
  • Портных Александр Иванович
  • Паничев Евгений Владимирович
RU2693283C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ НА УГЛЕРОДНЫЕ ВОЛОКНА И ТКАНИ 2013
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Соловьев Вячеслав Александрович
  • Скребцова Юлия Викторовна
  • Руднев Олег Леонидович
  • Шаталов Анатолий Иванович
RU2511146C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2010
  • Панков Владимир Петрович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
  • Руднев Олег Леонидович
  • Лебеденко Олег Станиславович
RU2425906C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2013
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Соловьев Вячеслав Александрович
  • Соболев Игорь Алексеевич
RU2521780C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2021
  • Панков Владимир Петрович
  • Румянцев Сергей Васильевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Головасичева Таисия Витальевна
  • Степанова Виктория Владимировна
  • Обухова Софья Евгеньевна
  • Степанова Марина Валерьевна
  • Пустовит Даниил Олегович
RU2766627C1
Способ плазменного нанесения наноструктурированного теплозащитного покрытия 2017
  • Губертов Арнольд Михайлович
  • Полянский Михаил Николаевич
  • Савушкина Светлана Вячеславовна
  • Чванов Владимир Константинович
  • Левочкин Петр Сергеевич
  • Стернин Леонид Евгеньевич
RU2683177C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2011
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Руднев Олег Леонидович
  • Шаталов Анатолий Иванович
  • Кабаков Олег Юрьевич
  • Соловьев Вячеслав Александрович
  • Соболев Игорь Алексеевич
RU2455385C1
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2022
  • Панков Владимир Петрович
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
  • Горобчук Александр Романович
  • Швецов Алексей Алексеевич
  • Букаткин Рустем Николаевич
  • Рубцов Николай Романович
  • Степанова Марина Валерьевна
  • Шрамко Дарья Ивановна
RU2780616C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ

Изобретение относится к порошковой металлургии. Способ получения эрозионностойких теплозащитных покрытий включает плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% порошка никеля, плакированного алюминием, дисперсностью 63÷125 мкм. Керметную композицию подают в плазменную струю под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности. Используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия. Обеспечивается повышение в 1,5-2 раза адгезионной стойкости покрытия. 1 табл., 1 пр.

Формула изобретения RU 2 534 714 C2

Способ получения эрозионностойких теплозащитных покрытий, включающий плазменное напыление подслоя нихрома и последующее напыление керметной композиции из механической порошковой смеси, содержащей 50÷80 мас.% диоксида циркония и 50÷20 мас.% никельсодержащего материала, подачу которой в плазменную струю осуществляют под срез сопла плазмотрона в направлении его перемещения относительно напыляемой поверхности, отличающийся тем, что в качестве никельсодержащего материала в керметной композиции используют порошок никеля, плакированный алюминием, с содержанием алюминия 10÷15 мас.%, дисперсностью 63÷125 мкм, при этом используют порошок диоксида циркония, содержащий в качестве стабилизирующей добавки 8÷12 мас.% оксида иттрия.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534714C2

СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННО СТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ 2003
  • Сайгин Владимир Валентинович
  • Воеводин Вячеслав Петрович
  • Зарубова Наталья Ивановна
  • Заев Эдуард Федорович
  • Кольцов Владимир Иванович
  • Курындин Анатолий Петрович
  • Педан Сергей Владимирович
  • Самороковский Федор Васильевич
  • Чурсин Игорь Германович
RU2283363C2
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ДЕТАЛИ ИЗ ЧУГУНА И СТАЛИ 2010
  • Панков Владимир Петрович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Ковалев Вячеслав Данилович
  • Руднев Олег Леонидович
  • Лебеденко Олег Станиславович
RU2425906C1
ПОКРЫТИЕ (ВАРИАНТЫ), ДЕТАЛЬ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ЗАЩИТЫ ДЕТАЛИ ОТ ПОВРЕЖДЕНИЙ, СВЯЗАННЫХ С ВОЗДЕЙСТВИЕМ ПЕСКА 2007
  • Литтон Дэвид А.
  • Мэлони Майкл Дж.
  • Смеггил Джон Г.
  • Сноу Дэвид Б.
  • Фрелинг Мэлвин
  • Шлихтинг Кевин В.
RU2420612C2
Емкостный датчик для измерения перемещений по трем координатным осям 1986
  • Леиашвили Георгий Робертович
SU1428908A1
US 20090053069 A1, 26.02.2009

RU 2 534 714 C2

Авторы

Маркин Кирилл Николаевич

Солопов Евгений Владимирович

Пильщик Марина Анатольевна

Сайгин Владимир Валентинович

Полежаева Екатерина Михайловна

Тишина Галина Николаевна

Даты

2014-12-10Публикация

2013-03-15Подача