СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА ИЗ СЫРЬЯ, СОДЕРЖАЩЕГО ТРИГЛИЦЕРИДЫ ЖИРНЫХ КИСЛОТ Российский патент 2014 года по МПК B01J37/02 B01J37/08 B01J37/18 B01J37/20 B01J21/04 B01J21/06 B01J23/835 B01J23/882 B01J23/883 C10G3/00 C10L1/02 C11C3/10 

Описание патента на изобретение RU2534993C1

Изобретение относится к области получения дизельного топлива из сырья, содержащего триглицериды жирных кислот.

Известен способ получения катализатора гидродеоксигенации, описанный в RU 2492922, 2013, включающий пропитку алюмооксидного носителя, модифицированного углеродным покрытием, водным раствором соединений Mo и Ni, при этом готовится совместный пропиточный раствор, содержащий никелевые соли молибдоникелевых гетерополикислот, стабилизированные двух- или трехосновными органическими кислотами (щавелевой, малоновой, малеиновой, молочной, винной, янтарной, лимонной), при pH среды 2,0-3,0, и проводится однократная пропитка вакуумированного носителя при температуре 40°С с последующей термообработкой при температурах не выше 130°С. В качестве соединений молибдена и никеля могут использовать Ni2[Ni(OH)6Mo6O18] или Ni3.5Н2[NiMo9O32].

Недостатком известного способа является пониженное содержание льюисовских кислотных центров на получаемом при этом катализаторе. Льюисовские кислотные центры катализируют реакции изомеризации, и их пониженное содержание приводит к низкому содержанию в продуктах реакции изопарафинов и, как следствие, плохим низкотемпературным свойствам получаемого продукта.

Известен способ приготовления катализатора для получения дизельного топлива из сырья природного происхождения, описанный в RU 2429909, 2011. Способ состоит в пропитке исходного прокаленного материала, кристаллического силикоалюмофосфата с цеолитподобной структурой типа SAPO-31, раствором соединения металла VIII группы - платины и/или палладия из расчета не более 10,0% масс. металла в составе конечного продукта с последующим высушиванием и окислительной обработкой. При этом окислительную подготовку проводят при температуре не выше 500°С, предпочтительно при температуре 400-450°С, со скоростью подъема температуры в печи не выше 20°С/мин, предпочтительно 2-5°С/мин.

Недостатками данного способа получения катализатора являются низкое начальное отношение изо/н-парафинов в продуктах реакции - не более 16%, а также низкая стабильность катализатора к побочному продукту реакции (воде), что проявляется в снижении активности катализатора (через 102 часа работы катализатора отношение изо/н-парафинов не превышает 13,4%).

Наиболее близким к изобретению является способ приготовления катализатора получения дизельного топлива гидродеоксигенацией кислородсодержащих алифатических соединений типа карбоновых кислот, их эфиров и триглицеридов, который является сложным композитом, содержащим переходные металлы, нанесенные на носитель (RU 2356629, 2009). Указанный катализатор получают методом пропитки носителя растворами соединений металлов с последующей сушкой и терморазложением соединений металлов. При нанесении нескольких компонентов пропитку каждого компонента проводят либо последовательно, либо одновременно с другими компонентами, нанесение соли благородного металла при необходимости проводят пропиткой по влагоемкости в последнюю очередь, терморазложение соединений металлов проводят после каждой пропитки либо в инертной среде при температуре 400-550°C с последующим восстановлением водородом при температуре 300-350°C, либо в кислородной среде при температуре 400-550°C с последующим восстановлением водородом, либо непосредственно в среде водорода при температуре 300-350°C. Полученный катализатор содержит, по крайней мере, благородный металл в количестве не более 5,0% масс. или содержит, по крайней мере, никель или медь, или железо, или их комбинацию в восстановленной форме в количестве не более 54,7% масс. и, по крайней мере, переходные металлы, отличающиеся от перечисленных выше, в оксидной форме в количестве не более 40% масс.

Недостатком данного способа получения катализатора является низкая активность получаемого катализатора в реакциях гидроизомеризации, что приводит к низкому содержанию в продуктах реакции изопарафинов и, как следствие, плохим низкотемпературным свойствам получаемого продукта.

Задачей описываемого способа приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот, является повышение его эффективности.

Поставленная задача достигается описываемым способом приготовления катализатора для получения дизельного топлива из растительного сырья путем нанесения на носитель - аморфный оксид алюминия методом пропитки с последующим просушиванием и прокаливанием последовательно водного раствора термически нестабильной соли элемента, выбранного из первой группы, включающей титан, олово, цирконий, затем водного раствора термически нестабильной соли элемента, выбранного из второй группы, включающей молибден, вольфрам, и после этого водного раствора термически нестабильной соли элемента, выбранного из третьей группы, включающей кобальт, никель, с получением катализатора, содержащего, % масс.: оксида элемента первой группы 4,2-15,0, оксида элемента второй группы 12,4-14,2, оксида элемента третьей группы 2,1-3,8, остальное оксид алюминия, с последующей активацией полученного катализатора вначале выдерживанием в среде водорода при температуре 450-500°С, давлении 5-8 МПа, в течение 3-4 часов, затем сульфидированием при температуре 250-300°С, давлении 5-8 МПа в течение 3-4 часов, при этом сульфидирование проводят смесью сероводорода и водорода с концентрацией сероводорода 10-15% об.

Технический результат заключается в получении катализатора, обладающего повышенной изомеризующей способностью и сохраняющего каталитическую активность в отношении реакций изомеризации в течение длительного времени, что приводит, в свою очередь, к получению дизельного топлива, имеющего улучшенные низкотемпературные свойства за счет состава, обогащенного изопарафинами, из сырья, содержащего триглицериды жирных кислот.

Описываемый способ проводят следующим образом. Экструдат оксида алюминия с удельной поверхностью 200-300 м2/г пропитывают водным раствором термически нестабильной соли элемента, выбранного из группы, включающей титан, олово, цирконий, после чего просушивают и прокаливают при температуре 400-600°C в течение 3-4 часов. При этом соль элемента разлагается до оксида элемента. После этого проводят пропитку носителя водным раствором термически нестабильной соли элемента, выбранного из группы, включающей молибден, вольфрам, после чего сушат и прокаливают при температуре 400-600°C в течение 3-4 часов. Затем проводят пропитку водным раствором термически нестабильной соли элемента, выбранного из группы, включающей кобальт, никель, после чего сушат и прокаливают при температуре 400-600°C в течение 3-4 часов. Каждую из процедур по пропитке и прокаливанию проводят от одного до трех раз в зависимости от требуемой концентрации элемента в катализаторе. При этом в качестве термически нестабильной соли элемента, выбранного из группы, включающей титан, олово, цирконий используют, в частности, гидроксид бис(аммонийлактат)титана (IV), нитрат цирконила, сульфат олова (IV); в качестве термически нестабильной соли элемента, выбранного из группы, включающей молибден, вольфрам, используют, в частности, молибдат аммония, вольфрамат аммония, в качестве термически нестабильной соли элемента, выбранного из группы, включающей кобальт, никель, используют, в частности, нитрат никеля, нитрат кобальта. Для всех вышеуказанных солей достаточно выполнения условия разложения соли элемента при температуре до 600°C, поэтому для приготовления катализатора возможно использовать и другие термически нестабильные соли указанных элементов. После окончательной прокалки содержание оксидов элементов первой группы составляет 4,2-15,0% масс., оксидов элементов второй группы - 12,4-14,2% масс., оксидов элементов третьей группы - 2,1-3,8% масс., остальное - оксид алюминия. Затем проводят активацию катализатора в два этапа. На первом этапе катализатор выдерживают в среде водорода при температуре 450-500°C, давлении 5-8 МПа в течение 2-3 часов. Затем проводят сульфидирование катализатора при температуре 250-300°C, давлении 5-8 МПа в течение 3-4 часов, при этом сульфидирование проводят смесью сероводорода и водорода с концентрацией сероводорода 10-15% об.

Эффективность катализатора определяют следующим образом. Исходное сырье, содержащее триглицериды жирных кислот (при температуре выше их температур плавления), смешивают с водородом, подогревают до температуры 300-400°C и подают в проточный реактор с неподвижным слоем катализатора, приготовленного по описанной выше методике. Объемная скорость подачи сырья - 0,6-1,0 ч-1, давление в реакторе - 7-12 МПа, отношение водород/сырье 600-1500 нм33. В ходе переработки сырья протекают, в частности, реакции гидрогенизации, гидродеоксигенации, гидроизомеризации. В качестве продуктов при этом образуются н-парафины и изопарафины (из жирных кислот, входящих в состав сырья), пропан (из глицерина, входящего в состав сырья) и вода. Продукт подвергают разделению в ректификационной колонне с получением дизельной, бензиновой и газообразной фракций и кубового остатка. В качестве сырья возможно использование растительных масел, животных жиров, липидов микроорганизмов, в частности, микроводорослей, цианобактерий, бактерий, а также их смеси.

Пример 1.

Аморфный оксид алюминия массой 20 г с удельной поверхностью 200 м2/г пропитывают водным раствором сульфата олова концентрацией 20% масс., после чего сушат и прокаливают в течение 4 часов при температуре 400°C. После этого проводят пропитку полученного носителя водным раствором молибдата аммония концентрацией 20% масс., после чего сушат и прокаливают в течение 4 часов при температуре 400°C. Указанную процедуру выполняют 2 раза. После этого проводят пропитку полученного носителя водным раствором нитрата кобальта концентрацией 20% масс., после чего сушат и прокаливают в течение 4 часов при температуре 400°C. Полученный катализатор содержит 4,2% оксида олова, 13,7% оксида молибдена, 2,4% оксида кобальта, остальное - оксид алюминия. Катализатор активируют сначала водородом при температуре 450°C, давлении 5 МПа в течение 2 часов. Затем сульфидируют смесью водорода и сероводорода с концентрацией сероводорода 10% об. при температуре 250°C, давлении 5 МПа в течение 3 часов.

Исходное сырье (кокосовое масло), содержащее триглицериды жирных кислот, смешивают с водородом, подогревают до температуры 300°C и подают в проточный реактор с неподвижным слоем катализатора, приготовленного по описанной выше методике. Объемная скорость подачи сырья - 0,6 ч-1, давление в реакторе - 7 МПа, отношение водород/сырье 600 нм33.

После разделения продуктов процесса получают выход продуктов, % масс.: 4,3 углеводородных газов, 5,2 бензиновой фракции, 79,3 дизельной фракции, 11,2 остатка. Отношение изо/н-парафины в дизельной фракции составляет 21,7% масс. на начальном периоде работы катализатора и 20,3% масс. после 120 часов работы.

Пример 2.

Аморфный оксид алюминия массой 53 г с удельной поверхностью 300 м2/г пропитывают водным раствором гидроксид бис(аммонийлактат)титана (IV) концентрацией 50% масс., после чего сушат и прокаливают в течение 3 часов при температуре 600°С. Указанную процедуру выполняют 3 раза. После этого проводят пропитку полученного носителя водным раствором вольфрамата аммония концентрацией 20% масс., после чего сушат и прокаливают в течение 4 часов при температуре 600°C. Указанную процедуру выполняют 2 раза. После этого проводят пропитку полученного носителя водным раствором нитрата никеля концентрацией 20% масс., после чего сушат и прокаливают в течение 3 часов при температуре 400°C. Полученный катализатор содержит 15,0% оксида титана, 12,4% оксида вольфрама, 2,9% оксида никеля, остальное - оксид алюминия. Катализатор активируют сначала водородом при температуре 450°C, давлении 5 МПа в течение 2 часов. Затем сульфидируют смесью водорода и сероводорода с концентрацией сероводорода 10% об. при температуре 250°C, давлении 5 МПа в течение 3 часов.

Исходное сырье (пальмовое масло), содержащее триглицериды жирных кислот, смешивают с водородом, подогревают до температуры 400°C и подают в проточный реактор с неподвижным слоем катализатора, приготовленного по описанной выше методике. Объемная скорость подачи сырья - 0,6 ч-1, давление в реакторе - 8 МПа, отношение водород/сырье 600 нм33.

После разделения продуктов процесса получают выход продуктов, % масс.: 7,6 углеводородных газов, 10,7 бензиновой фракции, 77,2 дизельной фракции, 4,5 остатка. Отношение изо/н-парафины в дизельной фракции составляет 20,3% масс. на начальном периоде работы катализатора и 19,7% масс. после 120 часов работы.

Пример 3.

Аморфный оксид алюминия массой 46 г с удельной поверхностью 200 м2/г пропитывают водным раствором сульфата олова концентрацией 20% масс., после чего сушат и прокаливают в течение 3 часов при температуре 600°C. Указанную процедуру выполняют 3 раза. После этого проводят пропитку полученного носителя водным раствором молибдата аммония концентрацией 20% масс., после чего сушат и прокаливают в течение 3 часов при температуре 600°C. Указанную процедуру выполняют 3 раза. После этого проводят пропитку полученного носителя водным раствором нитрата кобальта концентрацией 30% масс., после чего сушат и прокаливают в течение 3 часов при температуре 600°C. Полученный катализатор содержит 12,8% масс. оксида олова, 13,3% масс. оксида молибдена, 3,8% масс. оксида кобальта, остальное - оксид алюминия. Катализатор активируют сначала водородом при температуре 500°C, давлении 8 МПа в течение 3 часов. Затем сульфидируют смесью водорода и сероводорода с концентрацией второго 15%об. при температуре 300°C, давлении 8 МПа в течение 4 часов.

Исходное сырье (кокосовое масло), содержащее триглицериды жирных кислот, смешивают с водородом, подогревают до температуры 300°C и подают в проточный реактор с неподвижным слоем катализатора, приготовленного по описанной выше методике. Объемная скорость подачи сырья - 1,0 ч-1, давление в реакторе - 8 МПа, отношение водород/сырье 1500 нм33.

После разделения продуктов процесса получают выход продуктов, % масс.: 3,2 углеводородных газов, 4,4 бензиновой фракции, 82,1 дизельной фракции, 10,3 остатка. Отношение изо/н-парафины в дизельной фракции составляет 19,4% масс. на начальном периоде работы катализатора и 18,8% масс. после 120 часов работы.

Пример 4.

Аморфный оксид алюминия массой 36 г с удельной поверхностью 300 м2/г пропитывают водным раствором нитрата цирконила концентрацией 20% масс., после чего сушат и прокаливают в течение 4 часов при температуре 400°C. Указанную процедуру выполняют 2 раза. После этого проводят пропитку полученного носителя водным раствором молибдата аммония концентрацией 20% масс., после чего сушат и прокаливают в течение 3 часов при температуре 600°C. Указанную процедуру выполняют 3 раза. После этого проводят пропитку полученного носителя водным раствором нитрата никеля концентрацией 15% масс., после чего сушат и прокаливают в течение 4 часов при температуре 400°C. Полученный катализатор содержит 8,6% оксида циркония, 14,2% оксида молибдена, 2,1% оксида никеля, остальное - оксид алюминия. Катализатор активируют сначала водородом при температуре 500°C, давлении 8 МПа в течение 2 часов. Затем сульфидируют смесью водорода и сероводорода с концентрацией второго 15% об. в при температуре 300°C, давлении 8 МПа в течение 3 часов.

Исходное сырье (пальмовое масло), содержащее триглицериды жирных кислот, смешивают с водородом, подогревают до температуры 400°C и подают в проточный реактор с неподвижным слоем катализатора, приготовленного по описанной выше методике. Объемная скорость подачи сырья - 1,0 ч-1, давление в реакторе - 7 МПа, отношение водород/сырье 1500 нм33.

После разделения продуктов процесса получают выход продуктов, % масс.: 5,1 углеводородных газов, 7,1 бензиновой фракции, 79,7 дизельной фракции, 8,1 остатка. Отношение изо/н-парафины в дизельной фракции составляет 29,1% масс. на начальном периоде работы катализатора и 27,2% масс. после 120 часов работы.

Таким образом, описываемый способ приготовления катализатора для получения дизельного топлива из растительного сырья позволяет получить катализатор, обладающий повышенной изомеризующей способностью и сохраняющий каталитическую активность в отношении реакций изомеризации в течение длительного времени.

Похожие патенты RU2534993C1

название год авторы номер документа
СПОСОБ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА 2015
  • Перейма Василий Юрьевич
  • Леонова Ксения Александровна
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Носков Александр Степанович
RU2575639C1
КАТАЛИЗАТОР, СПОСОБ ПРИГОТОВЛЕНИЯ НОСИТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2011
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Будуква Сергей Викторович
  • Леонова Ксения Александровна
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
  • Парахин Олег Афанасьевич
RU2472585C1
Способ приготовления катализатора для процесса гидроочистки прямогонной дизельной фракции 2018
  • Бухтиярова Галина Александровна
  • Власова Евгения Николаевна
  • Демидов Михаил Борисович
  • Делий Ирина Валерьевна
  • Александров Павел Васильевич
RU2706335C1
Способ приготовления катализатора изодепарафинизации дизельных фракций 2021
  • Богомолова Татьяна Сергеевна
  • Смирнова Марина Юрьевна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2773356C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ, НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ, СПОСОБ ПРИГОТОВЛЕНИЯ НОСИТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ 2011
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Леонова Ксения Александровна
  • Будуква Сергей Викторович
  • Перейма Василий Юрьевич
  • Дик Павел Петрович
  • Носков Александр Степанович
  • Парахин Олег Афанасьевич
RU2478428C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ ДЛЯ ЭТОГО КАТАЛИЗАТОРА И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ 2006
  • Яшник Светлана Анатольевна
  • Исмагилов Зинфер Ришатович
  • Суровцова Татьяна Анатольевна
  • Носков Александр Степанович
  • Бухтиярова Галина Александровна
RU2313389C1
Состав и способ приготовления катализатора - ловушки кремния 2019
  • Красильникова Людмила Александровна
  • Юсовский Алексей Вячеславович
  • Гуляева Людмила Алексеевна
  • Шмелькова Ольга Ивановна
  • Виноградова Наталья Яковлевна
  • Битиев Георгий Владимирович
  • Никульшин Павел Анатольевич
  • Филатов Роман Владимирович
RU2742031C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ МАСЛЯНЫХ ФРАКЦИЙ И РАФИНАТОВ СЕЛЕКТИВНОЙ ОЧИСТКИ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2012
  • Томина Наталья Николаевна
  • Пимерзин Андрей Алексеевич
  • Антонов Сергей Александрович
  • Максимов Николай Михайлович
  • Дряглин Юрий Юрьевич
RU2497585C2
КАТАЛИЗАТОР ГИДРООЧИСТКИ С ТИТАНСОДЕРЖАЩИМ НОСИТЕЛЕМ И СЕРОСОДЕРЖАЩЕЙ ОРГАНИЧЕСКОЙ ДОБАВКОЙ 2018
  • Альканис, Хана Хуан
  • Бергверфф, Якоб Ари
  • Ау Йеунг, Кар Мин
  • Верман, Вильхельмус Клеменс Йо
RU2771815C2
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ 2007
  • Исмагилов Зинфер Ришатович
  • Шикина Надежда Васильевна
  • Яшник Светлана Анатольевна
  • Рогов Владимир Алексеевич
  • Керженцев Михаил Анатольевич
  • Пармон Валентин Николаевич
RU2342994C1

Реферат патента 2014 года СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА ИЗ СЫРЬЯ, СОДЕРЖАЩЕГО ТРИГЛИЦЕРИДЫ ЖИРНЫХ КИСЛОТ

Изобретение относится к способу приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот. Данный способ заключается в нанесении на носитель - аморфный оксид алюминия - методом пропитки с последующим просушиванием и прокаливанием последовательно водного раствора термически нестабильной соли элемента, выбранного из первой группы, включающей титан, олово, цирконий, затем водного раствора термически нестабильной соли элемента, выбранного из второй группы, включающей молибден, вольфрам, и после этого водного раствора термически нестабильной соли элемента, выбранного из третьей группы, включающей кобальт, никель. Полученный катализатор содержит, мас.%: оксид элемента первой группы - 4,2-15,0, оксид элемента второй группы - 12,4-14,2, оксид элемента третьей группы - 2,1-3,8, остальное - оксид алюминия. Далее катализатор активируют вначале выдерживанием в среде водорода при температуре 450-500°С, давлении 5-8 МПа в течение 3-4 ч, затем сульфидированием при температуре 250-300°С, давлении 5-8 МПа в течение 3-4 ч. При этом сульфидирование проводят смесью сероводорода и водорода с концентрацией сероводорода 10-15 об.%. Предлагаемый способ позволяет получать катализатор, обладающий повышенной изомеризующей способностью и сохраняющий каталитическую активность в отношении реакций изомеризации в течение длительного времени, что приводит к получению дизельного топлива, имеющего улучшенные низкотемпературные свойства. 4 пр.

Формула изобретения RU 2 534 993 C1

Способ приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот, путем нанесения на носитель - аморфный оксид алюминия - методом пропитки с последующим просушиванием и прокаливанием последовательно водного раствора термически нестабильной соли элемента, выбранного из первой группы, включающей титан, олово, цирконий, затем водного раствора термически нестабильной соли элемента, выбранного из второй группы, включающей молибден, вольфрам, и после этого водного раствора термически нестабильной соли элемента, выбранного из третьей группы, включающей кобальт, никель, с получением катализатора, содержащего, мас.%: оксид элемента первой группы - 4,2-15,0, оксид элемента второй группы - 12,4-14,2, оксид элемента третьей группы - 2,1-3,8, остальное - оксид алюминия, с последующей активацией полученного катализатора вначале выдерживанием в среде водорода при температуре 450-500°С, давлении 5-8 МПа в течение 3-4 ч, затем сульфидированием при температуре 250-300°С, давлении 5-8 МПа в течение 3-4 ч, при этом сульфидирование проводят смесью сероводорода и водорода с концентрацией сероводорода 10-15 об.%.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534993C1

КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И СПОСОБ ГИДРОДЕОКСИГЕНАЦИИ ЖИРНЫХ КИСЛОТ, ИХ ЭФИРОВ И ТРИГЛИЦЕРИДОВ 2007
  • Яковлев Вадим Анатольевич
  • Лебедев Максим Юрьевич
  • Ермаков Дмитрий Юрьевич
  • Хромова Софья Александровна
  • Новопашина Вера Михайловна
  • Кириллов Валерий Александрович
  • Пармон Валентин Николаевич
  • Систер Владимир Григорьевич
RU2356629C1
CN 101270300 A, 24.09.2008
US 4657663 A, 14.04.1987
JHA M
et al., Hydroprocessing of Jatropha Oil To Produce Green Fuels, INTERNATIONAL JOURNAL OF CHEMTECH RESEARCH, 2013, VOL.5, NO.2, PP.765-770

RU 2 534 993 C1

Авторы

Мельников Дмитрий Петрович

Тиунов Иван Александрович

Антонов Илья Алексеевич

Новиков Андрей Александрович

Котелев Михаил Сергеевич

Гущин Павел Александрович

Иванов Евгений Владимирович

Винокуров Владимир Арнольдович

Даты

2014-12-10Публикация

2013-10-04Подача