Изобретение относится к сварочным материалам, а именно к агломерированным флюсам, и может быть использовано для сварки низколегированных теплоустойчивых сталей перлитного класса, применяемых в нефтехимической промышленности. Данный агломерированный флюс разработан для сварки стали 2,25Cr-1Mo-0,25V композиции.
Известен ближайший по составу и области применения агломерированный флюс (прототип) для автоматической сварки низколегированных сталей (Патент России RU 2313435, В23К 35/362), содержащий обожженный магнезит, электрокорунд, плавиковошпатовый концентрат, сфеновый концентрат, марганец металлический, ферротитан, ферросилиций, титаномагнетит, ферробор, диоксид титана синтетический и связующую добавку силикат натрия-калия, при следующем соотношении компонентов, мас. %:
При этом отношение суммарного содержания обожженного магнезита, плавикого шпата и 1/3 сфенового концентрата к суммарному содержанию 2/3 сфенового концентрата, 2/3 силиката натрия-калия, 1/2 электрокорунда и 1/2 диоксида титана выбрано в пределах 1,8-2,1, отношение ферротитана к ферробору - в пределах 0,67-2,5, а отношение диоксида титана синтетического к плавиковому шпату выбрано в пределах 0,24-0,32.
Недостатком данного флюса является сильная загрязненность металла шва фосфором, из-за его высокого содержания в сфеновом концентрате. Фосфор способствует снижению механических свойств металла шва после термической обработки. Также содержание бора во флюсе приводит к образованию боридных фаз в металле шва, способствующих его тепловому охрупчиванию при рабочих температурах.
Техническим результатом данного изобретения является повышение ударной вязкости металла сварных швов, выполненных с использованием флюса предлагаемого состава после проведения высокого отпуска, при температуре от минус 30°C до минус 18°C с одновременным повышением прочности металла шва при температурах до +454°C и улучшением сварочно-технологических свойств.
Технический результат достигается тем что:
предлагаемый состав агломерированного флюса, содержащий: электрокорунд, плавиковый шпат, титаномагнетитовый концентрат, ферротитан, ферросилиций, обожженный магнезит, марганец металлический, также дополнительно содержит синтетический шлак и фтористый барий, а в качестве связующей добавки - силикат натрия, при следующем соотношении компонентов, мас.%:
при этом отношение суммарного содержания магнезита, плавикового шпата 1/3 синтетического шлака и 1/3 силиката натрия к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда и 2/3 силиката натрия находится в пределах 2,25-3,18, при этом синтетический шлак имеет следующий состав, мас.%: SiO2 (15-35), CaO (45-60), Al2O3 (5-10), CaF2 (8-16).
В состав флюса введен синтетический шлак взамен сфенового концентрата и синтетического диоксида титана, что способствует снижению остаточного содержания кислорода в металле шва, негативным образом влияющего на его ударную вязкость;
- в состав флюса введен фтористый барий, обеспечивающий уменьшение количества и размера неметаллических включений за счет улучшения отделимости шлаковой корки;
- в качестве связующей добавки введен силикат натрия, обеспечивающий снижение диффузионного водорода в наплавленном металле, что уменьшает склонность металла шва к водородному охрупчиванию.
При превышении содержания электрокорунда сверх указанных пределов отмечается повышенная загрязненность металла шва алюмосиликатными включениями, из-за чего происходит снижение ударной вязкости металла шва. При содержании электрокорунда ниже указанного предела происходит ухудшение сварочно-технологических свойств флюса.
Пределы содержания синтетического шлака выбраны с точки зрения повышения ударной вязкости и увеличения прочности металла шва.
Пределы содержания плавикового шпата выбраны с точки зрения обеспечения наилучших сварочно-технологических свойств и отделимости шлаковой корки. При превышении содержания плавикового шпата выше указанного предела наблюдается ухудшение отделимости шлаковой корки. При содержании плавикового шпата ниже указанного предела наблюдается нестабильное горение дуги.
Введение в состав флюса добавок титаномагнетита и фтористого бария в указанных пределах приводит к улучшению сварочно-технологических свойств флюса за счет улучшения смачиваемости жидкого металла расплавленным шлаком.
Содержание марганца металлического, ферротитана и ферросилиция выбраны с учетом обеспечения сочетания высоких прочностных и пластических свойств металла сварного шва, а также его высокой ударной вязкости. При содержании указанных элементов ниже указанных пределов отмечается снижение предела текучести и временного сопротивления металла шва после проведения высокого отпуска. При привышении указанных пределов снижается пластичность и ударная вязкость металла шва.
Указанные пределы содержания химических соединений в синтетическом шлаке выбраны с учетом обеспечения возможности его выплавки в электрической печи, так как в этих пределах выбранный состав попадает в область тройной эвтектики на диаграмме плавкости.
Изготовление данного флюса возможно на промышленных автоматизированных линиях по производству агломерированных флюсов.
Были изготовлены опытные партии агломерированных флюсов, составы которых приведены в таблице 1.
Проведена сварка стыковых соединений из стали 2,25Cr-1Mo-0,25V композиции с использованием проволоки марки Св-15Х3ГМ1ФТА ⌀4 мм в сочетании с изготовленными вариантами флюса.
Сварка проводилась на постоянном токе обратной полярности.
Сварочная проволока Св-15Х3ГМ1ФТА имеет следующий состав, % по мас.:
Результаты определения химического состава металла шва приведены в таблице 2.
Результаты определения механических свойств металла шва после проведения термической обработки по режиму 660±10°C/2 ч 5 мин + 705-710°C/7 ч 55 мин, а также результаты проверки сварочно-технологических свойств приведены в таблице 3.
МПа
МПа
МПа
Дж/см2
Дж/см2
ческие свойства
заказчика
Были проведены дополнительные исследования, которые показали что при повышении соотношения В>3,18 не удается обеспечить удовлетворительные сварочно-технологические свойства, из-за чего в металле шва образуется большое количество дефектов (шлаковые включения, побитость и т.д.), что отрицательным образом сказывается на значениях ударной вязкости.
При использовании прототипа не удалось получить требуемые значения механических свойств металла шва вследствие его теплового охрупчивания из-за высокого содержания в нем бора и фосфора.
При соотношении В < 2,25 не обеспечиваются требуемые значения ударной вязкости металла шва из-за загрязненности его неметаллическими включениями вследствие высокой окислительной способности шлака.
При соблюдении предлагаемого соотношения компонентов обеспечиваются прочностные и пластические свойства металла шва, а также высокий уровень его ударной вязкости.
Ожидаемый технико-экономический эффект от использования нового состава сварочного флюса для изготовления корпусов нефтехимического оборудования с высокими рабочими параметрами выразится в повышении срока службы оборудования при обеспечении его повышенной безопасности.
название | год | авторы | номер документа |
---|---|---|---|
Агломерированный флюс 48АФ-71 | 2019 |
|
RU2713769C1 |
КЕРАМИЧЕСКИЙ ФЛЮС ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ | 2002 |
|
RU2228828C2 |
АГЛОМЕРИРОВАННЫЙ ФЛЮС ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ КОРРОЗИОННО-СТОЙКОЙ СТАЛИ | 2007 |
|
RU2359798C1 |
КЕРАМИЧЕСКИЙ ФЛЮС ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ | 2006 |
|
RU2313435C1 |
АГЛОМЕРИРОВАННЫЙ ФЛЮС МАРКИ 48АФ-55 | 2005 |
|
RU2295431C2 |
Агломерированный флюс 48АФ-72 | 2019 |
|
RU2727137C1 |
АГЛОМЕРИРОВАННЫЙ ФЛЮС МАРКИ 48АФ-59 ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ ТРУБНЫХ СТАЛЕЙ КАТЕГОРИЙ Х90-Х100 | 2010 |
|
RU2442681C1 |
Керамический флюс для сварки низколегированных сталей | 1987 |
|
SU1773650A1 |
Агломерированный флюс для сварки и наплавки лентой нержавеющих сталей | 2018 |
|
RU2688021C1 |
КЕРАМИЧЕСКИЙ ФЛЮС ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ И НАПЛАВКИ | 2012 |
|
RU2493945C1 |
Изобретение может быть использовано для сварки низколегированных теплоустойчивых сталей перлитного класса, применяемых в нефтехимической промышленности. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд (19,0-25,0), синтетический шлак (14,0-18,0), плавиковый шпат (23,0-25,65), титаномагнетитовый концентрат (0,50-1,0), фтористый барий (0,40-1,5), марганец металлический (1,0-2,50), ферротитан (0,30-0,60), ферросилиций (0,20-0,50), обожженный магнезит (23,0-34,30), силикат натрия (5,0-8,0). Отношение суммарного содержания обожженного магнезита, плавикового шпата и 1/3 синтетического шлака, 1/3 силиката натрия к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда и 2/3 силиката натрия находится в пределах 2,25-3,18. Синтетический шлак имеет следующий химический состав, мас.%: SiO2 (15-35), СаО (45-60), Al2O3 (5-10), CaF2 (8-16). Флюс обеспечивает высокую ударную вязкость металла сварных швов, выполненных с использованием сварочной проволоки марки Св-15Х3ГМ1ФТА, после проведения высокого отпуска, при температуре испытаний от минус 30°C и одновременно высокую прочность металла шва при температурах до +454°C. 3 табл.
Агломерированный флюс для сварки низколегированных сталей, содержащий электрокорунд, плавиковый шпат, титаномагнетитовый концентрат, ферротитан, ферросилиций, обожженный магнезит, марганец металлический, отличающийся тем, что он дополнительно содержит синтетический шлак, фтористый барий и силикат натрия в качестве связующей добавки, при следующем соотношении компонентов, мас.%:
при этом отношение суммарного содержания обожженного магнезита, плавикового шпата и 1/3 синтетического шлака, 1/3 силиката натрия к суммарному содержанию 2/3 синтетического шлака, 1/2 электрокорунда и 2/3 силиката натрия находится в пределах 2,25-3,18, а синтетический шлак имеет следующий состав, мас.%:
КЕРАМИЧЕСКИЙ ФЛЮС ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ | 2006 |
|
RU2313435C1 |
Керамический флюс для сварки низколегированных сталей | 1987 |
|
SU1773650A1 |
КЕРАМИЧЕСКИЙ ФЛЮС ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ | 2002 |
|
RU2228828C2 |
АГЛОМЕРИРОВАННЫЙ ФЛЮС МАРКИ 48АФ-55 | 2005 |
|
RU2295431C2 |
US 4683011 А, 28.07.1987 |
Авторы
Даты
2014-12-10—Публикация
2013-04-08—Подача