Изобретение относится к области получения изделий из металлических порошков, в частности к технологии получения многослойных энерговыделяющих наноструктурированных пленок (фольг). Многослойные системы, состоящие из чередующихся слоев металлов, при уменьшении их толщины до нанометров приобретают высокую реакционную способность. Благодаря таким уникальным свойствам, как относительно низкая температура инициирования, высокая скорость реакции и реакционного тепловыделения, они нашли применение для соединения (пайки и сварки) разнообразных материалов, включая металлические сплавы, керамику, аморфные материалы и чувствительные к нагреву компоненты микроэлектронных устройств.
Известен метод синтеза твердых керамических материалов, таких как карбиды, бориды и алюминиды, в частности, в виде покрытия, наносимого на другой материал, с целью увеличения его износостойкости. Метод включает в себя напыления чередующихся слоев активных металлов со слоями углерода, бора или алюминия и последующей реакции многослойной структуры для получения плотных кристаллических керамик. Материал может быть нанесен на подложку или получен в виде фольги.
Недостатком данного метода является малая производительность и высокая стоимость полученных фольг. Кроме того, использование методов вакуумного осаждения накладывает ограничения на возможность получения фольг различного состава.
Прототипом предложенного изобретения является способ получения реакционного композиционного материала (US 2009/0178741 A1, опубл. 16.07.2009), в котором исходные материалы в виде порошков и/или фольг подвергаются серии механических деформаций. Во время первого шага сборка, состоящая из реакционных слоев и/или частиц, пластически деформируется до уменьшения поперечного сечения вдвое или больше. Затем уже деформированные слои складываются в новую сборку и повторно деформируются. Количество шагов сборки и деформации повторяется достаточное количество раз для того, чтобы получившийся материал был слоевым и имел относительно равномерную скорость реакции. Конечным продуктом является локально слоевой композиционный реакционный материал.
Недостатком данного метода получения является сложность в совместном деформировании металлов с сильно различающимися механическими свойствами (пределом текучести, модулем упругости, коэффициентом Пуассона), что ограничивает выбор исходных материалов.
В предложенном изобретении достигаются следующие технические результаты:
- получение реакционных фольг в широком диапазоне составов;
- получение реакционных фольг с заданным запасом энергии;
- получение реакционных фольг с высокими механическими свойствами;
- снижение трудоемкости и энергоемкости способа получения реакционных фольг.
Способ получения наноструктурированных реакционных фольг состоит из трех основных операций, которые можно рассмотреть на примере системы Ni-Al.
Сначала исходную смесь порошков никеля и алюминия при молярном отношении реагентов, равном например 1:1, подвергают высокоэнергетической механической обработке в высокоскоростной планетарно-шаровой мельнице в течение 4-5 минут в атмосфере инертного газа при давлении 1-5 атм. Отношение массы шаров к массе исходной смеси при обработке в высокоскоростной планетарно-шаровой мельнице составляет (5-40):1, диаметр шаров равен 2-8 мм, частота вращения барабанов мельницы равна 1800-2500 об/мин.
На первом этапе, полученные таким методом композиционные наноструктурированные частицы Ni/Al подвергают холодной прокатке. Данный процесс позволяет придать реакционному порошку форму ленты.
На втором этапе, полученную формованную среду реагентов подвергают плакирующей прокатке между слоями пластичного металла (например, алюминия) с обжатием реакционной смеси от 30 до 60%.
Таким образом, полученная наноструктурированная фольга содержат плакирующие наружные слои пластичного металла (в данном примере алюминия) и внутренние беспористый никель/алюминиевый реакционный с размером реагентов от 10 до 100 нм.
В общем случае в качестве наноструктурной реакционной среды могут выступать нанопорошки IV-VI, VIII групп Периодической системы химических элементов или смеси этих порошков, а также их окислы и их смеси. Кроме того, как показано в примере, в качестве наноструктурной реакционной среды могут быть использованы механоактивированные наноструктурированные композиционные частицы, состоящие из металлов, выбранных из II-IV, VIII групп Периодической системы химических элементов и/или смеси порошков, по крайней мере, одного металла, выбранного из III-IV групп Периодической системы химических элементов, и по крайней мере, одного неметалла, выбранного из группы элементов, включающей бор, углерод, кремний.
В качестве пластичных слоев металла, используемых для плакирования формованной среды и обеспечивающих необходимые механические свойства, могут выступать фольги металлов I-VI, VIII групп Периодической системы химических элементов. Выбор плакирующего слоя осуществляется исходя из условия возможности взаимодействия с реакционной средой.
В Таблице 1 приведены примеры систем, которые могут быть использованы в качестве реакционных сред и плакирующих слоев для получения наноструктурированных фольг.
слой
Формованная среда
реагентов
Преимуществами способа по заявленному изобретению является возможность получения наноструктурированных реакционных фольг с высокими механическими свойствами, а также контролируемой величиной и скоростью тепловыделения при горении.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ ЭНЕРГОВЫДЕЛЯЮЩИХ НАНОСТРУКТУРИРОВАННЫХ ФОЛЬГ ДЛЯ СОЕДИНЕНИЯ МАТЕРИАЛОВ | 2015 |
|
RU2618015C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ ЭНЕРГОВЫДЕЛЯЮЩИХ НАНОСТРУКТУРИРОВАННЫХ ПЛЕНОК ДЛЯ НЕРАЗЪЕМНОГО СОЕДИНЕНИЯ МАТЕРИАЛОВ | 2012 |
|
RU2479382C1 |
СПОСОБ ПОЛУЧЕНИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ В РЕЖИМЕ ГОРЕНИЯ | 2004 |
|
RU2277031C2 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОЙ ЛЕНТЫ ДЛЯ ТЕПЛОВЫДЕЛЯЮЩЕГО ЭЛЕМЕНТА | 2011 |
|
RU2499907C2 |
Способ получения наноструктурированного композита на основе бескислородного графена и ZrO | 2022 |
|
RU2788977C1 |
Способ получения слоистых металлокерамических композиционных материалов | 2020 |
|
RU2754419C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ НИКЕЛЯ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ | 2014 |
|
RU2554834C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ МЕДИ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ | 2014 |
|
RU2539496C1 |
Способ получения наноструктурированных композитов на основе бескислородного графена и оксидов алюминия или церия | 2022 |
|
RU2790846C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТА НА ОСНОВЕ НИОБИЯ И АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ КОМБИНИРОВАННОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ | 2013 |
|
RU2521945C1 |
Изобретение относится к области порошковой металлургии, в частности к технологии получения многослойных реакционных фольг. Может использоваться для соединения разнообразных материалов, включая металлические сплавы, керамику, аморфные материалы и чувствительные к нагреву компоненты микроэлектронных устройств. Исходную смесь компонентов подвергают холодной прокатке для придания ей формы ленты. Полученную ленту подвергают плакирующей прокатке между слоями пластичного металла (например, алюминия) с обжатием реакционной смеси от 30 до 60%. Полученная фольга содержит плакирующие наружные слои пластичного металла и внутренние реакционные слои с размером реагентов 10-100 нм. Обеспечивается снижение трудоемкости и энергоемкости, а также возможность получения фольг с заданным запасом энергии и высокими механическими свойствами. 4 з.п. ф-лы, 1 табл.
1. Способ получения наноструктурированной реакционной фольги, включающий плакирующую прокатку наноструктурированной среды реагентов между слоями пластичного металла, включающий на первом этапе холодную прокатку исходной смеси компонентов для придания ей формы ленты, на втором этапе плакирующую прокатку полученной ленты между слоями пластичного металла, которую осуществляют, по крайней мере, в один проход, с обжатием реакционной смеси от 30 до 60%, с получением многослойной реакционной фольги наноразмерной структуры, содержащей плакирующие наружные слои пластичного металла, и внутренние реакционные слои с размером реагентов от 10 до 100 нм.
2. Способ по п.1, отличающийся тем, что в качестве исходных компонентов для наноструктурированной среды используют нанопорошки металлов из IV-VI, VIII групп Периодической системы химических элементов или смеси этих порошков.
3. Способ по п.1, отличающийся тем, что в качестве исходных компонентов для наноструктурированной среды используют нанопорошки окислов металлов IV-VI, VIII групп Периодической системы химических элементов или смеси этих порошков.
4. Способ по п.1, отличающийся тем, что в качестве исходных компонентов для наноструктурированной среды используют механоактивированные наноструктурированные реакционные среды, состоящие из металлов, выбранных из II-IV, VIII групп Периодической системы химических элементов и/или смеси порошков, по крайней мере, одного металла, выбранного из III-IV групп Периодической системы химических элементов, и по крайней мере, одного неметалла, выбранного из группы элементов, включающей бор, углерод, кремний, а в качестве слоев пластичного металла используют фольгу металлов, например, алюминия, титана или молибдена.
5. Способ по п.1, отличающийся тем, что в качестве пластичного металла используют фольгу пластичных металлов и их сплавов, включающих Al, Ti, Cu, Fe, Sb, Au, Pt, Ag, Pb.
US 20090178741 (XUN YUWEI et al), 16.07.2009 A1 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩЕЙ МНОГОСЛОЙНОЙ ЛЕНТЫ | 2008 |
|
RU2371795C1 |
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ ЭНЕРГОВЫДЕЛЯЮЩИХ НАНОСТРУКТУРИРОВАННЫХ ПЛЕНОК ДЛЯ НЕРАЗЪЕМНОГО СОЕДИНЕНИЯ МАТЕРИАЛОВ | 2012 |
|
RU2479382C1 |
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
US 5316863 A, 31.05.1994 |
Авторы
Даты
2014-12-20—Публикация
2013-06-20—Подача