СПОСОБ ПЕРЕРАБОТКИ ПОПУТНЫХ И ПРИРОДНЫХ ГАЗОВ Российский патент 2015 года по МПК C07C29/50 C07C31/04 C07C51/12 C07C53/08 C07C67/36 C07C69/14 C07C27/14 

Описание патента на изобретение RU2538970C1

Изобретение относится к нефтяной и газовой промышленности, в частности к процессам переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана в химические продукты. Эти газы являются ценным углеводородным сырьем, однако во многих случаях не находят практического применения и зачастую сжигаются на факелах. Попутный нефтяной газ сложно транспортировать и трудно использовать без дополнительной переработки или очистки от содержащихся в нем тяжелых компонентов - С3+ гомологов метана. Проблема утилизации попутного нефтяного газа стоит перед всеми нефтяными компаниями. Для нефтяников транспортировка и переработка попутного нефтяного газа для дальнейшего применения нерентабельна, так как стоимость такого топлива, как правило, превышает рыночную.

Известны способы переработки попутных нефтяных и природных «жирных» газов с использованием физических методов разделения - абсорбции, компримирования и сепарации, дистилляции и др. Так, известен способ выделения углеводородов С3+ из попутных нефтяных газов путем противоточной абсорбции абсорбентом с последующей десорбцией абсорбированной фракции С3+, и возвратом регенерированного после десорбции абсорбента в абсорбер, характеризующемуся тем, что используют попутные нефтяные газы с давлением 8-20 атм, и абсорбцию проводят при температуре 8-40°С, при этом выходящий из абсорбера насыщенный абсорбент нагревают до 280-350°С и подают на десорбцию, которую проводят при давлении 15-19 атм, а в качестве абсорбента используют тяжелые компоненты исходных попутных газов (Патент РФ 2338734 (2007)). Недостатками указанного способа являются сложность процесса, высокая стоимость оборудования и необходимость дополнительных затрат энергии на регенерацию абсорбента.

Известен способ переработки попутного нефтяного газа, включающий компримирование исходного нефтяного попутного газа, его охлаждение и сепарацию с получением сухого газа и газового конденсата, в котором осуществляют двухступенчатую сепарацию, газовый конденсат подвергают дистилляции в ректификационной колонне с получением пропан-бутановой фракции и стабильного газового конденсата, а пропан-бутановую фракцию охлаждают и конденсируют (Патент РФ 2340841 (2007). Недостатком указанного способа является большой дополнительный расход энергии на компримирование газа.

Известны также способы переработки попутных нефтяных и природных «жирных» газов, включающие дополнительную операцию химической переработки «тяжелых» компонентов углеводородных газов. Так, в процессах с использованием углеводородного сырья, содержащего высшие углеводороды, компанией Хальдор-Топсеэ осуществляется предварительный реформинг углеводородного сырья при температурах около 450-550°С. В процессе предреформинга с водяным паром за счет паровой конверсии С3+ - углеводородов в этих условиях осуществляется «очистка» метанового газа от указанных соединений и обеспечивается последующий паровая конверсия метана без осмоления и закоксовывания катализаторов получения синтез-газа (Патент РФ 2263627 С2 (Хальдор Топсеэ) (2000). Недостатками указанного способа являются существенное удорожание и усложнение оборудования за счет введения дополнительной стадии предриформинга и дополнительный расход энергии на проведение этой стадии.

Известен также способ и установка для совместной переработки сжиженных углеводородных газов (СУГ) и промысловой подготовки продукции нефтяных или газоконденсатных месторождений с получением продуктов, транспортируемых совместно с товарной нефтью и товарным газом, а именно технологии переработки сжиженных углеводородных газов (СУГ) в смесь ароматических углеводородов (ароматический концентрат). Способ включает промысловую подготовку попутного нефтяного газа (ПНГ) или «сырого газа» с получением товарного осушенного газа и газового конденсата, подачу конденсата на стадию стабилизации с выделением из упомянутого газового конденсата сжиженных углеводородных газов (СУГ), реакционное превращение СУГ в смесь ароматических углеводородов на стадии платформинга, разделение продуктов реакции платформинга на водород, углеводородный газ и жидкие продукты реакции, после чего из жидких продуктов реакции выделяют ароматические углеводороды, которые подают в магистральный нефтепровод в составе товарной нефти (Патент РФ 2435827 (2010)). Недостатками указанного способа являются сложная технологическая схема процесса, удорожание и усложнение оборудования за счет стадии предриформинга и высокий расход энергии на осуществление процесса.

Известен способ подготовки попутных нефтяных и сырых природных газов для использования в поршневых двигателях внутреннего сгорания (RU 2385897, C10L 3/10, F02M 31/00, 10.04.2010), который состоит в том, что подготавливаемый газ в смеси с кислородсодержащим газом, например с воздухом, подвергают термообработке при температуре 450-1100°С в течение 0,01-50 с при содержании свободного кислорода в смеси 0,5-5%. Термообработка может быть проведена также и в присутствии катализаторов окислительной конденсации метана, паровой, углекислотной конверсии метана, окислительного дегидрирования низших алканов или их комбинации. В качестве промоторов реакции могут выступать оксиды азота, пероксид водорода, соединения галогенов, непредельные или кислородсодержащие углеводороды или снижающие вероятность сажеобразования (пары воды). В результате при указанных условиях практически не наблюдается конверсия более легких углеводородов С14, в то время как конверсия углеводородов С5+, имеющих очень низкие метановые числа, превышает 95%. Основными продуктами превращения С5+ углеводородов при такой термообработке попутных нефтяных газов являются (в порядке убывания выхода) этилен, метан, этан и монооксид углерода. Таким образом обеспечивается селективная конверсия соединений, имеющих низкую детонационную стойкость и повышающих вероятность смоло- и сажеобразования, и происходит увеличение метанового числа поучаемого газа. Несмотря на то, что в указанном способе удается конвертировать углеводороды С5+, недостатком способа является низкая конверсия С24 компонентов попутного нефтяного газа, имеющих невысокие метановые числа по сравнению с чистым метаном. Например, пропан и бутан имеют метановые числа 35 и 11, соответственно, и, находясь даже в малых количествах в смеси с метаном, значительно снижают ее метановое число. Например, для смеси 95% метана, 3% пропана и 2% бутана метановое число составляет всего 72. Кроме того, для собственного энергопотребления промыслов может быть использована лишь небольшая часть добываемого попутного газа (менее 20%).

Известны процессы переработки «сухого» (метанового, без примесей С2+ углеводородов) природного газа, включающие получение метанола или диметилового эфира из синтез-газа и последующую переработку метанола или диметилового эфира карбонилированием в уксусную кислоту и/или метилацетат в жидкой или паровой фазах.

Для осуществления процесса карбонилирования предложены катализаторы на основе кислых цезиевых солей фосфорвольфрамовой гетерополикислоты, промотированные родием, активность которых достигает 190 г/(л кат.ч) [Патент РФ 2170724, G.G. Volkova, L.M. Plyasova, A.N. Salanov, G.N. Kustova, T.M. Yurieva and V.A. Likholobov, C07C 67/36, B01J 31/16, 20.07.2001)], недостатком которых являлось использование дорогого компонента в составе катализатора - родия, что приводит к значительному росту стоимости катализатора и удорожанию процесса в целом.

Известны катализатор и способ получения метилацетата (Патент РФ 2422203) без использования родия и иодидных промоторов путем карбонилирования диметилового эфира при температуре 200-250°С, давлении 10-20 атм, в присутствии катализатора, представляющего собой кислую цезиевую соль фосфорвольфрамовой гетерополикислоты состава: CsxHyPW12O40, где: 1.3≤х≤2.2, у=3-х, с добавками платины в количестве от 0.25 до 1.0 мас.%. Однако такой метод не направлен напрямую на решение задачи создания простого и экономичного способа переработки попутных нефтяных и природных «жирных» газов, а описывает одну из возможных стадий такой переработки.

Наиболее близким, хотя и непрямым аналогом, содержащим некоторые признаки, совпадающие с заявляемым нами изобретением, является патент US 5659077 от 19.08.97, в котором предложен комплексный процесс превращения метана в уксусную кислоту и/или метилацетат путем парциального окисления метана, минуя стадию получения синтез-газа. Прямое окисление метана с конверсией метана за один проход через реактор 6-12% осуществляется при температуре выше 425°С и рабочем давлении ~70-100 бар. Выделенный метанол и добавочное количество покупного метанола при этом же давлении и Т=180-250°С карбонилируются монооксидом углерода, образовавшимся в реакционных газах процесса окисления, в уксусную кислоту на родиевом катализаторе в присутствии CH3I. Недостатками предложенного метода являются: необходимость осуществления процесса парциального окисления при высоком давлении (~70-100 бар), рециркуляции значительного объема непрореагировавшего метана, большое накопление диоксида углерода и необходимость удаления его избытка скрубберной очисткой рециркулирующего потока, а также то, что он рассчитан на использование только «сухого» метанового газа, то есть не обеспечивает заявленный нами технический результат, направленный на переработку углеводородного газа сложного состава с получением обогащенного метаном и очищенного от тяжелых компонентов газа для питания энергоустановок и одновременным получением эфиров карбоновых кислот.

Задачей изобретения является создание более простого и экономичного способа переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана с получением очищенного «сухого» газа и ряда ценных жидких продуктов.

Поставленная задача решается заявляемым способом переработки попутных и природных газов с повышенным содержанием тяжелых гомологов метана путем прямого парциального окисления углеводородного газа и последующего карбонилирования получаемых продуктов, в котором углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов:кислород 10÷1:1 и проводят селективное окисление тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда карбоновых кислот и их эфиров и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа. Непрореагировавший метан и дополнительное количество метана, образовавшегося при окислении тяжелых компонентов газа, и далее указанную реакционную смесь подвергают дополнительной обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда карбоновых кислот и их эфиров и обогащенный метаном очищенный от тяжелых компонентов топливный газ для энергоустановок. Карбонилирование проводят известными приемами в паровой или жидкой фазе с предварительным выделением метанола или без такого выделения.

Благодаря проведению парциального окисления при температуре 350-420°С и давлении 10-40 бар, то есть в более мягких условиях по сравнению с аналогом, обеспечивается избирательное окисление только углеводородов С3+, тогда как метан в этих условиях не окисляется и даже, наоборот, дополнительно нарабатывается наряду с основными продуктами парциального окисления углеводородов С3+ - метанолом, этанолом, СО. Эти продукты совместно с непрореагировавшим метаном дополнительно обрабатывают с участием известных катализаторов карбонилирования, при этом СО взаимодействует со спиртами с получением карбоновых кислот и их эфиров, которые конденсируют с получением водного раствора этих соединений, а в виде газофазного продукта получают очищенный от примесей тяжелых компонентов углеводородный газ с более высоким метановым числом по сравнению с исходным углеводородным газом, который может использоваться как топливо для энергоустановок. Водный раствор карбоновых кислот и их эфиров может быть дополнительно фракционирован известными приемами с получением отдельных целевых компонентов, либо напрямую использован при нефтедобыче.

Примеры осуществления предложенного способа.

Пример 1. Смесь углеводородных газов состава: СН4 - 90,7%, С2Н6 - 1,8%, С3Н8 - 5,3%, С4Н10 - 2,2% (метановое число 64) при давлении 40 бар в количестве 0,35 нм3/час нагревают до температуры 350°С и подвергают трехступенчатому окислению кислородом, который подают в количестве 18,4 л/час на каждую ступень окисления, суммарно 55,2 л/час (соотношение углерод тяжелых компонентов:кислород ~ 1:1). В результате парциального окисления получают газовую смесь в количестве 0,39 нм3/час, содержащую 41,8 г метанола и 28,3 г монооксида углерода. Смесь охлаждают до температуры 180-250°С и подвергают карбонилированию известным способом, где при 98% конверсии метанола и селективности 99% получают 62,4 г/ч смеси уксусной кислоты и метилового эфира уксусной кислоты, и 0,34 нм3 обогащенного метаном газа с метановым числом 78.

Пример 2. Смесь углеводородных газов состава: СН4 - 81%, С2Н6 - 3,2%, С3Н8 - 12,1%, С4Н10 - 3,7% (метановое число 52) при давлении 20 бар в количестве 0,32 нм3/час нагревают до температуры 370°С и подвергают двухступенчатому окислению кислородом, который подают в количестве 16,8 л/час на каждую ступень окисления, суммарно 33,6 л/час (соотношение углерод тяжелых компонентов:кислород ~ 5:1). В результате парциального окисления получают газовую смесь в количестве 0,34 нм3/час, содержащую 24 г метанола и 14,7 г монооксида углерода. Смесь охлаждают до температуры 180-250°С и подвергают карбонилированию известным способом, где при 98% конверсии метанола и селективности 99% получают 35,8 г/ч смеси уксусной кислоты и метилового эфира уксусной кислоты, и 0,31 нм3 обогащенного метаном газа с метановым числом 56.

Пример 3. Смесь углеводородных газов состава: СН4 - 81,7%, С2Н6 - 3,7%, С3Н8 - 11,2%, С4Н10 - 3,4% (метановое число 53) при давлении 10 бар в количестве 0,3 нм3/час нагревают до температуры 420°С и подвергают окислению кислородом, который подают в количестве 15,8 л/час (соотношение углерод тяжелых компонентов:кислород ~ 10:1). В результате парциального окисления получают газовую смесь в количестве 0,31 нм3/час, содержащую 11,3 г метанола и 6,9 г монооксида углерода. Смесь охлаждают до температуры 180-250°С и подвергают карбонилированию известным способом, где при 98% конверсии метанола и селективности около 99% получают 16,8 г/ч смеси уксусной кислоты и метилового эфира уксусной кислоты, и 0,3 нм3 обогащенного метаном газа с метановым числом 55.

Похожие патенты RU2538970C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНЫХ И ПОПУТНЫХ ГАЗОВ 2013
  • Савченко Валерий Иванович
  • Фокин Илья Геннадьевич
  • Арутюнов Владимир Сергеевич
  • Седов Игорь Владимирович
  • Магомедов Рустам Нухкадиевич
  • Белов Геннадий Петрович
  • Никитин Алексей Витальевич
RU2551678C1
СПОСОБ ПЕРЕРАБОТКИ ПОПУТНЫХ И ПРИРОДНЫХ ГАЗОВ 2016
  • Савченко Валерий Иванович
  • Арутюнов Владимир Сергеевич
  • Седов Игорь Владимирович
  • Фокин Илья Геннадьевич
  • Никитин Алексей Витальевич
RU2641701C1
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛПРОПИОНАТА И МЕТИЛМЕТАКРИЛАТА 2014
  • Савченко Валерий Иванович
  • Арутюнов Владимир Сергеевич
  • Никитин Алексей Витальевич
  • Магомедов Рустам Нухкадиевич
  • Седов Игорь Владимирович
  • Фокин Илья Геннадьевич
RU2578598C2
Способ переработки нефтезаводских газов 2017
  • Никитин Алексей Витальевич
  • Седов Игорь Владимирович
  • Савченко Валерий Иванович
  • Арутюнов Владимир Сергеевич
  • Озерский Алексей Валерьевич
  • Максимов Антон Львович
  • Волков Алексей Владимирович
  • Баженов Степан Дмитриевич
  • Горбунов Дмитрий Николаевич
  • Флид Виталий Рафаилович
RU2688932C1
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ ГЛИКОЛЕВОЙ КИСЛОТЫ 2013
  • Савченко Валерий Иванович
  • Фокин Илья Геннадьевич
  • Арутюнов Владимир Сергеевич
  • Седов Игорь Владимирович
  • Липин Михаил Геннадьевич
RU2538971C1
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКОГО СЫРЬЯ (ВАРИАНТЫ) 2011
  • Мысов Владислав Михайлович
  • Лукашов Владимир Петрович
  • Фомин Владимир Викторович
  • Ионе Казимира Гавриловна
  • Ващенко Сергей Петрович
  • Соломичев Максим Николаевич
RU2458966C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ГАЗООБРАЗНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ (ВАРИАНТЫ) 2011
  • Мысов Владислав Михайлович
  • Лукашов Владимир Петрович
  • Фомин Владимир Викторович
  • Ионе Казимира Гавриловна
  • Ващенко Сергей Петрович
  • Соломичев Максим Николаевич
RU2473663C2
СПОСОБ КОНВЕРСИИ МЕТАНА 2014
  • Столяревский Анатолий Яковлевич
RU2571147C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДСОДЕРЖАЩЕГО ГАЗА 2013
  • Столяревский Анатолий Яковлевич
RU2530066C1
СПОСОБ ОЧИСТКИ ВОДЫ, ОБРАЗУЮЩЕЙСЯ НА СТАДИИ СИНТЕЗА УГЛЕВОДОРОДОВ В ПРОЦЕССЕ GTL, И СПОСОБ ЕЕ ИСПОЛЬЗОВАНИЯ 2013
  • Долинский Сергей Эрикович
  • Дергачев Александр Александрович
RU2555043C1

Реферат патента 2015 года СПОСОБ ПЕРЕРАБОТКИ ПОПУТНЫХ И ПРИРОДНЫХ ГАЗОВ

Изобретение относится к способу переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем прямого парциального окисления углеводородного газа и последующего карбонилирования получаемых продуктов. При этом углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов:кислород 10÷1:1 и проводят селективное окисление тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда карбоновых кислот и их эфиров и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа. Данный способ является более простым экономичным для переработки попутных нефтяных и природных газов с повышенным содержанием гомологов метана с получением очищенного «сухого» газа и ряда ценных жидких продуктов. 3 пр.

Формула изобретения RU 2 538 970 C1

Способ переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем прямого парциального окисления углеводородного газа и последующего карбонилирования получаемых продуктов, отличающийся тем, что углеводородный газ смешивают с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов:кислород 10÷1:1 и проводят селективное окисление тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар, а полученные продукты подвергают обработке в присутствии катализаторов карбонилирования с получением жидких продуктов из ряда карбоновых кислот и их эфиров и обогащенного метаном очищенного от тяжелых компонентов сухого топливного газа.

Документы, цитированные в отчете о поиске Патент 2015 года RU2538970C1

WO 2009010407 A1, 22.01.2009
СПОСОБ НЕПРЕРЫВНОГО ПРОИЗВОДСТВА УКСУСНОЙ КИСЛОТЫ И/ИЛИ МЕТИЛАЦЕТАТА 2002
  • Серп Филипп Жиль
  • Тибо Даниэль Марсель
  • Маршан Даниэль Анри
  • Кальк Филипп Жозеф
  • Ле Берр Кароль Мари
RU2275352C2
JP 0007112946 A, 02.05.1995
СПОСОБ ПРЯМОГО ОКИСЛЕНИЯ ГАЗООБРАЗНЫХ АЛКАНОВ 2007
  • Полак Натан А.
  • Карр Роберт У.
  • Гранч Роджер Дж.
RU2448082C2
Способ получения формальдегидаи МЕТАНОлА 1978
  • Рудольф Брокхауз
  • Ганс-Юрген Франке
SU847913A3

RU 2 538 970 C1

Авторы

Савченко Валерий Иванович

Фокин Илья Геннадьевич

Арутюнов Владимир Сергеевич

Седов Игорь Владимирович

Даты

2015-01-10Публикация

2013-06-26Подача