СПОСОБ ПОЛУЧЕНИЯ БИОСИЛИФИЦИРОВАННЫХ НАНОТРУБОК Российский патент 2015 года по МПК C12N1/12 B82B3/00 

Описание патента на изобретение RU2539734C1

Изобретение относится к технологии получения биосилифицированных (кремнеземистых) наноматериалов и может быть использовано при получении дисперсий и наномодифицирующих добавок для строительных материалов.

В настоящее время в промышленности строительных материалов используют углеродные наномодификаторы, в том числе углеродные нанотрубки. Использование их в качестве модификатора структуры цементных композиций связано с определенными сложностями. Их трудно распределить в объеме бетонной или растворной смеси, так как вводятся они в небольшом объеме. Углеродные нанотрубки плохо смачиваются водой и требуется приготовление суспензии с поверхностно-активным веществом для равномерного распределения углеродных трубок в водной среде. Кроме того, углеродные нанотрубки имеют низкую адгезию к компонентам цементных композиционных материалов, являются инертными по отношению к минералам цементного клинкера и не вступают с ними в химические реакции и соответственно не повышают прочностные показатели цементной системы. Нанотрубки из аморфного кремнезема не имеют таких недостатков, хорошо смачиваются и смешиваются с водой, равномерно распределяясь по объему растворной смеси, химически взаимодействуют с минералами клинкера, увеличивая прочность цементной системы.

Получение же кремнеземистых нанотрубок в настоящее время мало изучено и не освоено.

Известен способ получения сульфидно-мышьяковых нанотрубок посредством бактерии Shewanella [1], которые по экологической безопасности не могут применяться в добавках для цементных композиций.

Наиболее близким по технической сущности и достигаемому результату является способ получения нанотрубок из продуктов биоокремнения Байкальских цианобактерий (Штаммы Pseudanabaena sp. 0411 из Котельниковского источника и Leptolyngbyalaminosa 0412 из Змеиного источника) [2].

Согласно предлагаемому методу цианобактерии выращиваются на минеральной среде Z-8 (табл.1). Раствор силиката натрия нейтрализуют 2М HCl до pH 7,0 и смешивают со средой Z-8 в отношении 9:1 и вводят в раствор культуры цианобактерий. Культивирование цианобактерий осуществляют в термостате при постоянном естественном освещении и температуре 36°C, с заменой питательной среды 1 раз в 3 суток. Процесс биосилификации длится 26 суток, по истечении которого остатки питательной среды сливают, культура заливается 30% раствором пероксида водорода и подвергается термической обработке при температуре 70°C. Полученные биосилифицированные нанотрубки заливают дистиллированной водой, промывают и сушат. Толщина биосилифицированных нанотрубок составляет 173-355 нм.

Таблица 1 Минеральная среда Z-8 (на 1 л воды) NaNO3 0,4500 г K2HPO4×3H2O 0,04 г MgSO4×7H2O 0,1520 г Na2EDTA 0,04 г Ca(NO3)2 0,06 г Na2CO3 0,02 г FeCl3 0,0016 г HBO3 0,0027 г Co(NO3)×H2O 0,035 г CuSO4×H2O 0,020 г MnCl2×4H2O 0,0018 г Na2MoO4×2H2O 0,0002 г ZnSO4×7H2O 0,0002 г

К недостаткам известного способа относятся: длительное время наращивания массы биосилифицированных нанотрубок, что делает их малопригодными для применения в производственных условиях, и большая толщина биосилифицированных нанотрубок.

Задача, положенная в основу заявляемого изобретения, состоит в осуществлении способа получения биосилифицированных нанотрубок, состоящих из аморфного кремнезема, в более короткие сроки и с меньшей их толщиной.

Данная задача достигается за счет того, что получение биосилифицированных нанотрубок, включающее культивирование цианобактерий в растворе силиката натрия, нейтрализованного соляной кислотой и смешанного со средой Z-8, выдерживаемого в термостате с заменой и удалением питательной среды, обработкой раствором пероксида водорода с последующей термической обработкой и промыванием дистиллированной водой, отличается тем, что культивирование цианобактерий производится в питательной среде Z-8, дополнительно содержащей 0,05 г хлорида аммония и соотношением раствора силиката натрия, нейтрализованного 2М HCl и среды Z-8 5:1, в биореакторе при температуре 25°C при постоянном освещении и перемешивании, в течение 10 суток с заменой питательной среды один раз в 2 суток.

Экспериментально было установлено, что изменением соотношения между раствором силиката натрия, нейтрализованного 2М НCl и среды Z-8, можно регулировать толщину кремнеземистого слоя на поверхности цианобактерий в большую и меньшую сторону. На рис.1 представлены полученные биосилифицированные нанотрубки.

Для ускорения роста цианобактерий их культивирование производится в биореакторе при температуре 25°C при постоянном освещении и перемешивании, в течение 10 суток. Более частая замена питательной среды также способствует интенсификации процесса окремнения цианобактерий.

Кроме того, в питательную среду дополнительно вводится хлорид аммония из расчета 0,05 г/л, приводящий к увеличению массы бактерий на 40-50%.

Пример 1. К минеральной среде Z-8 добавляют раствор, полученный нейтрализацией 7,56 г 40%-ного HCl 5,06 граммами силиката натрия до pH 7,0 при отношении 5:1 и вводят в раствор культуры цианобактерий. Культивирование цианобактерий осуществляют в биореакторе при постоянном освещении и температуре 25°C, с заменой питательной среды 1 раз в 2 суток. Процесс биосилификации длится 14 суток, по истечении которых остатки питательной среды сливаются, культура заливается 30% раствором пероксида водорода и нагревается до 70°C. Полученные биосилифицированные нанотрубки промывают дистиллированной водой. Толщина полученных нанотрубок составляет менее 100 нм 2-5 мас.%, от 100 нм до 300 нм 60-70 мас.% и более 300 нм остальные.

Пример 2. К минеральной среде Z-8 добавляют: 0,05 г/л NH4Cl и раствор, полученный нейтрализацией 7,71 г 40% HCl 5,16 г силиката натрия до pH 7,0 при отношении 5:1, и вводят в раствор культуры цианобактерий. Культивирование цианобактерий осуществляют в биореакторе при постоянном освещении и температуре 25°C, с заменой питательной среды 1 раз в 2 суток. Процесс биосилификации длится 10 суток, по истечении которых остатки питательной среды сливаются, культура заливается 30% раствором пероксида водорода и нагревается до 70°C. Полученные биосилифицированные нанотрубки промывают дистиллированной водой. Толщина полученных нанотрубок составляет: менее 100 нм в количестве 5-10 мас.%, от 100 нм до 300 нм 70-80 мас.% и более 300 нм остальные.

Источники информации

1. Proceedings of the National Academy of Sciences (PNAS). August 9, 2005, vol.102, no 32, s.111167-11172.

2. Лихошвай E.B., Сороковикова Е.Г., Белькова Н.Л. и др. Минерализация кремния при культивировании цианобактерий из горячих источников // Доклады академии наук, 2006, т.407, №4, с.556-560.

Похожие патенты RU2539734C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОЙ ДОБАВКИ ДЛЯ БЕТОНА 2013
  • Лукутцова Наталья Петровна
  • Устинов Александр Геннадьевич
RU2557412C2
СПОСОБ ПОЛУЧЕНИЯ ФИКОБИЛИПРОТЕИНОВ 2023
  • Железнова Светлана Николаевна
  • Геворгиз Руслан Георгиевич
  • Бобко Николай Иванович
  • Мирошниченко Екатерина Сергеевна
  • Нехорошев Михаил Валентинович
  • Рябушко Виталий Иванович
RU2824762C1
Применение штамма Anabaena sp. PCC 7120 для получения наночастиц серебра 2015
  • Хмель Инесса Александровна
  • Кокшарова Ольга Алексеевна
  • Гулин Александр Андреевич
  • Костров Андрей Николаевич
  • Надточенко Виктор Андреевич
RU2614118C1
ШТАММ Arthrospira platensis (Nordst.) Geitl. rsemsu T/05-117 - ПРОДУЦЕНТ ЛИПИДОСОДЕРЖАЩЕЙ БИОМАССЫ 2012
  • Чернова Надежда Ивановна
  • Коробкова Тамара Павловна
  • Киселева Софья Валентиновна
  • Зайцев Сергей Иванович
  • Радомский Николай Владимирович
RU2539766C2
ПИТАТЕЛЬНАЯ СРЕДА ДЛЯ КУЛЬТИВИРОВАНИЯ КЛЕТОЧНОЙ КУЛЬТУРЫ Atragene speciosa Weinm 2009
  • Дорофеев Вячеслав Юрьевич
  • Карначук Раиса Александровна
  • Медведева Юлия Валерьевна
RU2422515C1
Способ культивирования микроводоросли Chlorella kessleri для использования в качестве биокомпонента топлива 2023
  • Гималетдинов Рустем Рафаилевич
  • Усманов Марат Радикович
  • Валеев Салават Фанисович
  • Носова Юлия Евгеньевна
RU2819445C1
СПОСОБ ПОЛУЧЕНИЯ БИОМАССЫ ЦИАНОБАКТЕРИЙ РОДА LEPTOLYNGBYA В ВИХРЕВОМ ФОТОБИОРЕАКТОРЕ 2023
  • Наумов Игорь Владимирович
  • Шарифуллин Булат Руфкатович
  • Тинтулова Мария Вячеславовна
  • Геворгиз Руслан Георгиевич
  • Железнова Светлана Николаевна
  • Бочарова Елена Анатольевна
  • Мирошниченко Екатерина Сергеевна
  • Голубь Николай Алексеевич
  • Благинина Анастасия Андреевна
RU2805968C1
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА КУЛЬТУРЫ КЛЕТОК БРУЦЕЛЛ ИЗ ШТАММА Brucella abortus 19 ДЛЯ ПРИГОТОВЛЕНИЯ БРУЦЕЛЛЕЗНЫХ АНТИГЕНОВ, БРУЦЕЛЛЕЗНЫЕ АНТИГЕНЫ (ТРИ ВАРИАНТА), СПОСОБ ИЗГОТОВЛЕНИЯ БРУЦЕЛЛЕЗНОЙ ДИАГНОСТИЧЕСКОЙ СЫВОРОТКИ И ТЕСТ-СИСТЕМЫ ДЛЯ ДИАГНОСТИКИ БРУЦЕЛЛЕЗА ЖИВОТНЫХ (ТРИ ВАРИАНТА) 2014
  • Тройнин Анатолий Серафимович
  • Ельников Василий Викторович
  • Крюкова Елена Николаевна
  • Сурнев Дмитрий Сергеевич
  • Мельник Николай Васильевич
  • Голдина Вера Федоровна
  • Литенкова Ирина Юрьевна
  • Галкина Татьяна Сергеевна
  • Климанов Аркадий Иванович
  • Скляров Олег Дмитриевич
  • Зенов Николай Иванович
RU2593712C2
СПОСОБ ПОЛУЧЕНИЯ СТЕФАРИНА СУЛЬФАТА В КУЛЬТУРЕ КЛЕТОК РАСТЕНИЯ СТЕФАНИЯ ГЛАДКАЯ 2009
  • Башашкина Елена Валерьевна
  • Дудник Наталья Викторовна
  • Зайцева Галина Васильевна
  • Мошкин Андрей Германович
  • Строгов Семен Ефимович
  • Туркин Владимир Васильевич
  • Лапшова Екатерина Ивановна
  • Воробьев Сергей Викторович
RU2399665C1
Жидкая фракция продукта окислительного крекинга отходов растительного сырья в качестве регулятора роста и развития растений и способ ее применения 2016
  • Апашева Людмила Магомедовна
  • Карташева Зоя Сергеевна
  • Касаикина Ольга Тарасовна
  • Комиссаров Геннадий Германович
  • Лобанов Антон Валерьевич
  • Овчаренко Елена Николаевна
  • Писаренко Леонид Михайлович
  • Рубцова Наталья Анатольевна
  • Русина Ирина Федоровна
RU2622735C1

Иллюстрации к изобретению RU 2 539 734 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ БИОСИЛИФИЦИРОВАННЫХ НАНОТРУБОК

Изобретение относится к технологии получения биосилифицированных наноматериалов. Предложен способ получения биосилифицированных нанотрубок. Способ включает культивирование цианобактерий в растворе силиката натрия, нейтрализованного соляной кислотой и смешанного с питательной средой Z-8, выдерживание в термостате с заменой и удалением питательной среды. Проведение последующей обработки раствором пероксида водорода, нагрева и промывания дистиллированной водой. Культивирование цианобактерий производится в питательной среде Z-8, дополнительно содержащей 0,05 г/л хлорида аммония, при соотношении раствора силиката натрия, нейтрализованного 2М HCl, и среды Z-8 5:1. Культивирование осуществляют в биореакторе при температуре 25°C при постоянном освещении и перемешивании, в течение 10 суток с заменой питательной среды один раз в 2 суток. Изобретение позволяет получить биосилифицированные нанотрубки в более короткие сроки и с меньшей толщиной. 1 ил., 1 табл., 2 пр.

Формула изобретения RU 2 539 734 C1

Способ получения биосилифицированных нанотрубок, включающий культивирование цианобактерий в растворе силиката натрия, нейтрализованного соляной кислотой и смешанного с питательной средой Z-8, выдерживаемого в термостате с заменой и удалением этой среды, обработку раствором пероксида водорода, нагрев и промывание дистиллированной водой, отличающийся тем, что культивирование цианобактерий производят в питательной среде Z-8, дополнительно содержащей 0,05 г/л хлорида аммония, при соотношении раствора силиката натрия, нейтрализованного 2М HCl, и среды Z-8 5:1, в биореакторе при температуре 25°C при постоянном освещении и перемешивании, в течение 10 суток с заменой питательной среды один раз в 2 суток.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539734C1

СОРОКОВИКОВА Е.Г., БЕЛЫХ О.И., ЛИХОШВАЙ Е.В., Цианобактерии термальных источников Байкальской рифтовой зоны: видовой состав, ультраструктура клеток, биоминерализация кремния // Современная Палеонтология: Классические и Новейшие Методы, М.:ПИН РАН, 2007, стр.11-18
СОРОКОВИКОВА Е.Г., ТИХОНОВА И.В., БЕЛЫХ О.И
И ДР., Идентификация двух штаммов

RU 2 539 734 C1

Авторы

Лукутцова Наталья Петровна

Устинов Александр Геннадьевич

Даты

2015-01-27Публикация

2013-11-22Подача