КОМПОЗИЦИЯ СОПОЛИМЕРА ПРОПИЛЕНА/1-ГЕКСЕНА С НИЗКОЙ ТЕМПЕРАТУРОЙ ТЕПЛОВОЙ СВАРКИ Российский патент 2015 года по МПК C08L23/14 C08F210/16 C08J5/18 B32B27/32 

Описание патента на изобретение RU2541470C9

Настоящее изобретение относится к новой композиции сополимера пропилена, ее получению и применению.

Полипропилены имеют множество применений. Например, полипропилены применяют в областях, где свойства тепловой сварки играют важную роль, таких как индустрия упаковки пищевых продуктов. Независимо от типа полимера, полимер должен удовлетворять всем заданным конечным свойствам и дополнительно должен быть легким в процессе технологической обработки, то есть должен противостоять нагрузке. Однако конечные свойства и технологические свойства часто входят в противоречие.

Во многих случаях шов тепловой сварки, образующийся между соединяемыми тепловой сваркой поверхностями, оказывается под нагрузкой, пока он еще горячий. Это означает, что прочностные характеристики горячего шва полипропилена очень важны для обеспечения прочного шва тепловой сварки, образующегося еще до охлаждения. Но не только прочность горячего шва должна быть достаточно высокой, а также температура начала тепловой сварки должна быть достаточно низкой. Преимуществом работы при более низкой температуре является отсутствие воздействия высокой температуры на подвергающееся тепловой сварке изделие. Это также является экономическим преимуществом, поскольку более низкую температуру дешевле создавать и поддерживать.

Помимо свойств тепловой сварки в области пищевой промышленности также требуется низкое содержание экстрагируемых веществ.

Дополнительно, ударопрочность полимера должна отвечать требованиям индустрии упаковки для пищевых продуктов.

Следовательно, объект настоящего изобретения относится к полипропилену с высокой прочностью горячего шва и низкой температурой начала тепловой сварки (SIT) и хорошей ударопрочностью.

Находкой настоящего изобретения является то, что композиция сополимера пропилена имеет достаточно высокое содержание сомономера, сомономеры представляют длинноцепочечные α-олефины, и указанная композиция сополимера пропилена включает две различные фракции, указанные фракции отличаются содержанием сомономера.

Соответственно, в первом варианте воплощения настоящее изобретение относится к композиции сополимера пропилена (Р), включающей

(a) сополимер пропилен (А) с содержанием сомономера по меньшей мере 1,0 масс.%, сомономеры представляют С512 α-олефины, и

(b) сополимер пропилена (В) с содержанием сомономера в пределах от 4,0 до 20,0 масс.%, сомономеры представляют C512 α-олефины,

где дополнительно

(i) содержание сомономера в сополимере пропилена (А) ниже по сравнению с содержанием сомономера в сополимере пропилена (В),

(ii) композиция сополимера пропилена (Р) имеет содержание сомономера по меньшей мере 2,0 масс.%, сомономеры представляют С5-C12 α-олефины,

(iii) массовое соотношение сополимера пропилена (А) к сополимеру пропилена (В) составляет в пределах от 20/80 до 80/20, предпочтительно в пределах от 25/75 до 75/25, более предпочтительно в пределах от 30/70 до 70/30.

Предпочтительно композиция сополимера пропилена (Р) включает в качестве полимерных компонентов только сополимер пропилена (А) и сополимер пропилена (В).

Неожиданно было обнаружено, что такая композиция сополимера пропилена (Р) имеет низкую температуру начала тепловой сварки (SIT) и превосходные ударные свойства (смотрите Примеры).

Далее настоящее изобретение (первый и второй варианты воплощения) будет описано более детально.

Композиция сополимера пропилена (Р) по настоящему изобретению характеризуется достаточно высоким содержанием сомономера. Довольно высокое содержание сомономера достигается за счет того, что композиция сополимера пропилена (Р) по настоящему изобретению включает две фракции сополимера пропилена, как указанно в описании настоящей патентной заявки. Используемый в описании настоящей патентной заявки термин «сомономер» относится к полимеризуемой единице, отличающейся от пропилена. Следовательно, композиция сополимера пропилена (Р) по настоящему изобретению должна иметь содержание сомономера по меньшей мере 2,0 масс.%, более предпочтительно по меньшей мере 2,4 масс.%, еще более предпочтительно по меньшей мере 3,0 масс.%, еще более предпочтительно по меньшей мере 3,5 масс.%, такое как по меньшей мере 3,8 масс.%. Следовательно, предпочтительно, чтобы композиция сополимера пропилена (Р) по настоящему изобретению имела содержание сомономера в пределах от 2,0 до 10,0 масс.%, более предпочтительно в пределах от 2,4 до 8,0 масс.%, еще более предпочтительно в пределах от 3,0 до 8,0 масс.%, еще более предпочтительно в пределах от 3,5 до 8,0 масс.%, такое как в пределах от 3,5 до 6,5 масс.%.

Сомономеры композиции сополимера пропилена (Р) представляют С512 α-олефинов, например, 1-гексен и/или 1-октен. Композиция сополимера пропилена (Р) по настоящему изобретению может содержать более чем один тип сомономера. Следовательно, композиция сополимера пропилена (Р) по настоящему изобретению может содержать один, два или три различных сомономера, сомономеры выбирают из группы, состоящей из С5 α-олефина, С6 α-олефина, C7 α-олефина, C8 α-олефина, С9 α-олефина, С10 α-олефина, С11 α-олефина и C12 α-олефина. Однако, предпочтительно, чтобы композиция сополимера пропилена (Р) содержала только один тип сомономера. Предпочтительно композиция сополимера пропилена (Р) включает помимо пропилена только 1-гексен и/или 1-октен. В конкретном предпочтительном варианте воплощения настоящего изобретения сомономер композиции сополимера пропилена (Р) представляет только 1-гексен.

Композиция сополимера пропилена (Р) наряду с сополимером пропилена (А) и сополимером пропилена (В) по настоящему изобретению предпочтительно представляет рандом сополимеры пропилена. Используемый в описании настоящей патентной заявки термин «рандом сополимер» предпочтительно понимается согласно IUPAC (Pure Appl. Chem., Vol. No. 68, 8, стр.1591-1595, 1996). Предпочтительно молярная концентрация диад сомономеров, таких как диады 1-гексена, удовлетворяет соотношению

[НН]<[Н]2

где

[НН] представляет молярную долю смежных сомономерных единиц, таких как смежные единицы 1-гексена, и

[Н] представляет молярную долю общих сомономерных единиц, таких как общих единиц 1-гексена в полимере.

Предпочтительно композиция сополимера пропилена (Р) наряду с сополимером пропилена (А) и сополимером пропилена (В), как детально описано ниже, является изотактической. Следовательно, понятно, что сополимер пропилена (Р), сополимер пропилена (А) и сополимер пропилена (В) имеют достаточно высокую концентрацию изотактических триад, то есть выше чем 90%, более предпочтительно выше чем 92%, еще более предпочтительно выше чем 93% и еще более предпочтительно выше чем 95%, такое как выше чем 99%.

Распределение молекулярной массы (MWD) представляет отношение числа молекул в полимере к индивидуальной длине цепи. Распределение молекулярной массы (MWD) выражается как соотношение среднемассовой молекулярной массы (Mw) и среднечисловой молекулярной массы (Mn). Среднечисловая молекулярная масса (Mn) представляет среднюю молекулярную массу полимера, выраженную как число молекул в статический момент графика в каждом пределе молекулярной массы по сравнению с молекулярной массой. По сути это общая молекулярная масса всех молекул, деленная на количество молекул. В свою очередь, среднемассовая молекулярная масса (Mw) - это статический момент графика массы полимера в каждом пределе молекулярной массы по сравнению с молекулярной массой.

Среднечисловую молекулярную массу (Mn) и среднемассовую молекулярную массу (Mw), наряду с распределением молекулярной массы (MWD), определяют при использовании эксклюзионной хроматографии размеров (SEC) при использовании прибора Waters Alliance GPCV 2000 с онлайн вискозиметром. Температура термостата 140°C. В качестве растворителя используют трихлорбензол (ISO 16014).

Соответственно, предпочтительно, чтобы композиция сополимера пропилена (Р) по настоящему изобретению имела среднемассовую молекулярную массу (Mw) в пределах от 100 до 700 г/моль, более предпочтительно в пределах от 150 до 500 г/моль.

Среднечисловая молекулярная масса (Mn) пропилена предпочтительно составляет в пределах от 25 до 200 г/моль, более предпочтительно в пределах от 30 до 150 г/моль.

Дополнительно, понятно, что распределение молекулярной массы (MWD), измеренное согласно ISO 16014, следовательно, не более чем 4,0; более предпочтительно не более чем 3,5; такое как не более чем 3,0. Следовательно, распределение молекулярной массы (MWD) композиции сополимера пропилена (Р) предпочтительно составляет в пределах от 2,0 до 4,0, еще более предпочтительно в пределах от 2,0 до 3,5, такое как в пределах от 2,0 до 3,0.

Дополнительно, предпочтительно, чтобы композиция сополимера пропилена (Р) по настоящему изобретению имела скорость течения расплава (MFR), заданную в определенных пределах. Скорость течения расплава, измеренная при нагрузке 2,16 кг при температуре 230°C (ISO 1133), указана, как MFR2 (230°C). Следовательно, предпочтительно, чтобы композиция сополимера пропилена (Р) по настоящему изобретению имела скорость течения расплава MFR2 (230°C), измеренную согласно ISO 1133 в пределах от 2,0 до 50,0 г/10 минут, более предпочтительно в пределах от 3,0 до 25,0 г/10 минут, еще более предпочтительно в пределах от 4,0 до 20,0 г/10 минут.

Как указано выше, композиция сополимера пропилена по настоящему изобретению (Р) по существу подходит для индустрии упаковки. Следовательно, желательны хорошие свойства тепловой сварки, такие как довольно низкая температура начала тепловой сварки (SIT) в комбинации с хорошими механическими свойствами, такими как ударопрочность.

Следовательно, предпочтительно композиция сополимера пропилена (Р) имеет температуру начала тепловой сварки (S1T) не более чем 120°C, более предпочтительно не более чем 110°C, еще более предпочтительно в пределах от 90 до 120°C, еще более предпочтительно в пределах от 93 до 118°C.

Но не только температура начала тепловой сварки (SIT) должна быть достаточно низкой, а также температура плавления (Tm) должна быть достаточно высокой. Соответственно, разница между температурой плавления (Tm) и температурой начала тепловой сварки (SIT) должна быть достаточно высокой. Таким образом, предпочтительно композиция сополимера пропилена (Р) удовлетворяет уравнению (I), более предпочтительно уравнению (Ia),

T m S I T 22 ° C                      ( I )

T m S I T 24 ° C                       ( Ia ) ,

где

Tm представляет температуру плавления в градусах Цельсия [°C] композиции сополимера пропилена (Р),

SIT представляет температуру начала тепловой сварки (SIT) в градусах Цельсия [°C] композиции сополимера пропилена (Р).

Температура плавления (Tm), измеренная согласно ISO 11357-3, композиции сополимера пропилена (Р) предпочтительно составляет по меньшей мере 125°C, более предпочтительно по меньшей мере 128°C. Таким образом, по существу понятно, что температура плавления (Tm), измеренная согласно ISO 11357-3, композиции сополимера пропилена составляет в пределах от 125 до 145°C, более предпочтительно в пределах от 128 до 140°C.

Дополнительно, понятно, что композиция сополимера пропилена (Р) по настоящему изобретению имеет температуру кристаллизации (Tc), измеренную согласно ISO 11357-3, равную по меньшей мере 88°C, более предпочтительно по меньшей мере 90°C. Следовательно, полипропилен предпочтительно имеет температуру кристаллизации (Tc), измеренную согласно ISO 11357-3, в пределах от 88 до 110°C, более предпочтительно в пределах от 90 до 105°C.

Дополнительно сополимер пропилена может характеризоваться содержанием фракции, растворимой в холодном ксилоле (XCS), измеренным согласно ISO 6427. Следовательно, композиция сополимера пропилена (Р) предпочтительно характеризуется достаточным содержанием фракции, растворимой в холодном ксилоле (XCS), менее 20,0 масс.%, более предпочтительно менее 15,0 масс.%, еще более предпочтительно равной или менее 10,0 масс.%, еще более предпочтительно менее 5,0 масс.%, такое как менее 4,0 масс.%. Соответственно, по существу понятно, что композиция сополимера пропилена (Р) по настоящему изобретению имеет содержание фракции, растворимой в холодном ксилоле (XCS), в пределах от 0,3 до 20,0 масс.%, более предпочтительно в пределах от 0,5 до 10,0 масс.%, еще более предпочтительно в пределах от 0,5 до 5,0 масс.%.

Аналогично фракции, растворимой в холодном ксилоле (XCS), фракция, растворимая в горячем гексане (HHS), указывает на то, что часть полимера имеет низкую изотактичность и кристалличность и растворима в горячем гексане при температуре 50°C.

Следовательно, предпочтительно, чтобы композиция сополимера пропилена (Р) имела содержание фракции, растворимой в горячем гексане (HHS), измеренное согласно FDA 177.1520, не более чем 2,5 масс.%, более предпочтительно не более чем 2,0 масс.%, такое как не более чем 1,5 масс.%.

Композиция сополимера пропилена (Р) по настоящему изобретению дополнительно характеризуется присутствующими полимерными фракциями. Следовательно, композиция сополимера пропилена (Р) по настоящему изобретению включает по меньшей мере, предпочтительно состоит из двух фракций, а именно сополимера пропилена (А) и сополимера пропилена (В).

Дополнительно, сополимер пропилена (А) предпочтительно представляет фракцию, бедную сомономером, при этом сополимер пропилена (В) представляет фракцию, богатую сомономером. Следовательно, содержание сомономера в сополимере пропилена (А) ниже по сравнению с содержанием сомономера в сополимере пропилена (В). Таким образом, понятно, что композиция сополимера пропилена (Р) удовлетворяет корреляции: сомономер (Р) / сомономер (А), находящейся в пределах от более чем 1,0 до 10,0, более предпочтительно в пределах от 1,2 до 6,0, еще более предпочтительно в пределах от 1,5 до 5,0,

где

сомономер (А) представляет содержание сомономера сополимера пропилена (А), приведенное в массовых процентах [масс.%],

сомономер (Р) представляет содержание сомономера композиции сополимера пропилена (Р), приведенное в массовых процентах [масс.%].

Следовательно, понятно, что сополимер пропилена (А) имеет содержание сомономера по меньшей мере 1,0 масс.%, более предпочтительно содержание сомономера составляет в пределах от более чем 1,0 до 4,0 масс.%, еще более предпочтительно в пределах от 1,2 до 3,5 масс.%.

Сомономеры сополимера пропилена (А) представляют С5-C12 α-олефины, более предпочтительно сомономеры сополимера пропилена (А) выбирают из группы, состоящей из C5 α-олефина, С6 α-олефина, C7 α-олефина, С8 α-олефина, С9 α-олефина, С10 α-олефина, С11 α-олефина и С12 α-олефина, еще более предпочтительно сомономеры сополимера пропилена (А) представляют 1-гексен и/или 1-октен. Сополимер пропилена (А) может содержать более чем один тип сомономера. Следовательно, сополимер пропилена (А) по настоящему изобретению может содержать один, два или три различных сомономера. Однако предпочтительно, чтобы сополимер пропилена (А) содержал только один тип сомономера. Предпочтительно сополимер пропилена (А) включает помимо пропилена только 1-гексен и/или 1-октен. В конкретном предпочтительном варианте воплощения настоящего изобретения сополимер пропилена (A) представляет только 1-гексен.

Следовательно, сополимер пропилена (А) в одном предпочтительном варианте воплощения настоящего изобретения представляет сополимер пропилена только из пропилена и 1-гексена, где содержание 1-гексена составляет в пределах от 1,0 до 4,0 масс.%, предпочтительно в пределах от 1,2 до 3,5 масс.%.

Как указано выше, сополимер пропилена (В) предпочтительно имеет более высокое содержание сомономера по сравнению с сополимером пропиленом (А). Соответственно, сополимер пропилена (В) имеет содержание сомономера в пределах от 2,5 масс.% до 20,0 масс.%, предпочтительно в пределах от 3,0 до 18,0 масс.%, более предпочтительно в пределах от 4,0 до 15,0 масс.%.

Сомономеры сополимера пропилена (В) представляют C512 α-олефины, более предпочтительно сомономеры сополимера пропилена (В) выбирают из группы, состоящей из С5 α-олефина, С6 α-олефина, С7 α-олефина, С8 α-олефина, С9 α-олефина, С10 α-олефина, С11 α-олефина и С12 α-олефина, еще более предпочтительно сомономеры сополимера пропилена (В) представляют 1-гексен и/или 1-октен. Сополимер пропилена (B) может содержать более чем один тип сомономера. Следовательно, сополимер пропилена (В) по настоящему изобретению может содержать один, два или три различных сомономера. Однако предпочтительно, чтобы сополимер пропилена (В) содержал только один тип сомономера. Предпочтительно сополимер пропилена (В) включает помимо пропилена только 1-гексен и/или 1-октен. В конкретном предпочтительном варианте воплощения настоящего изобретения сомономер сополимера пропилена (В) представляет только 1-гексен.

Таким образом, сополимер пропилена (В) в одном предпочтительном варианте воплощения настоящего изобретения представляет сополимер пропилена только из пропилена и 1-гексена, где содержание 1-гексена составляет в пределах от 2,5 масс.% до 20,0 масс.%, предпочтительно в пределах от более чем 3,0 до 18,0 масс.%, более предпочтительно в пределах от 4,0 до 15,0 масс.%.

По существу предпочтительно, чтобы сомономеры сополимера пропилена (А) и сополимера пропилена (В) представляли одни и те же. Следовательно, в одном предпочтительном варианте воплощения настоящего изобретения композиция сополимера пропилена (Р) по настоящему изобретению включает, предпочтительно включает только сополимер пропилена (А) и сополимер пропилена (В), в обоих полимерах сомономер представляет только 1-гексен.

Один из важных аспектов настоящего изобретения состоит в том, что сополимер пропилена (А) и композиция сополимера пропилена (Р) отличаются по содержанию сомономера. Дополнительно, сополимер пропилена (А) и композиция сополимера пропилена (Р) также могут отличаться скоростью течения расплава. Следовательно, соотношение MFR (A)/MFR (Р) предпочтительно составляет в пределах от 0,25 до 10,0; более предпочтительно в пределах от 0,5 до 5,0; еще более предпочтительно в пределах от 0,7 до 2,5,

где

MFR (А) представляет скорость течения расплава MFR2 (230°C) [г/10 минут], измеренную согласно ISO 1133, сополимера пропилена (А),

MFR (Р) представляет скорость течения расплава MFR2 (230°C) [г/10 минут], измеренную согласно ISO 1133, композиции сополимера пропилена (Р).

Дополнительно, понятно, что сополимер пропилена (А) имеет скорость течения расплава MFR2 (230°C), измеренную согласно ISO 1133, по меньшей мере 0,5 г/10 минут, более предпочтительно по меньшей мере 2,0 г/10 минут, еще более предпочтительно в пределах от 0,5 до 70 г/10 минут, еще более предпочтительно в пределах от 2,0 до 50,0 г/10 минут, такое как в пределах от 5,5 до 20,0 г/10 минут.

Поскольку высокая скорость течения расплава указывает на низкую молекулярную массу, понятно, что сополимер пропилена (А) имеет среднюю молекулярную массу (Mw) менее 450 кг/моль, еще более предпочтительно менее 400 кг/моль, еще более предпочтительно в пределах от 150 до менее 450 кг/моль, такое как в пределах от 180 до 400 кг/моль.

Дополнительно, сополимер пропилен (А) предпочтительно имеет содержание фракции, растворимой в холодном ксилоле (XCS), менее 2,0 масс.%, более предпочтительно менее 1,5 масс.%, еще более предпочтительно в пределах от 0,3 до 2,0 масс.%, еще более предпочтительно в пределах от 0,5 до 1,5 масс.%. По существу предпочтительно, чтобы сополимер пропилена (А) имел более низкое содержание фракции, растворимой в холодном ксилоле (XCS), по сравнению с сополимером пропилена(В).

Композиция сополимера пропилена (Р) может содержать добавки, известные из предшествующего уровня техники, такие как антиоксиданты, нуклеирующие агенты, добавки, понижающие трение и антистатики. Полимерная фракция, предпочтительно сумма фракций сополимера пропилена (А) и сополимера пропилена (В), составляет по меньшей мере 90 масс.%, более предпочтительно по меньшей мере 95 масс.%, еще более предпочтительно по меньшей мере 98 масс.%, такое как по меньшей мере 99 масс.%.

Композиция сополимера пропилена (Р) по существу может быть получена, предпочтительно получена при использовании приведенного ниже способа.

Дополнительно, настоящее изобретение относится к применению композиции сополимера пропилена (Р) в качестве пленки, такой как поливная пленка, полученная методом полива, пленка, полученная экструзионно-раздувным формованием, или пленка, полученная из двуосноориентированного полипропилена (ВОРР). Композиция сополимера пропилена (Р) по настоящему изобретению также может быть использована в качестве покрывающего слоя субстрата, покрытого при использовании экструзии.

Соответственно, настоящее изобретение также относится к однослойной пленке, предпочтительно к слою для соединения тепловой сваркой поливной пленки, пленки, полученной экструзионно-раздувным формованием, или пленки, полученной из двуосноориентированного полипропилена (ВОРР), указанная однослойная пленка (слой для соединения тепловой сваркой) включает по меньшей мере 70 масс.%, более предпочтительно по меньшей мере 80 масс.%, такое как по меньшей мере 90 масс.%, композиции сополимера пропилена (Р) по настоящему изобретению. В наиболее предпочтительном варианте воплощения настоящего изобретения однослойная пленка (слой для соединения тепловой сваркой) состоит из композиции сополимера пропилена (Р) по настоящему изобретению.

Дополнительно, настоящее изобретение относится к субстрату, покрытому покрывающим слоем при использовании экструзии, указанный покрывающий слой включает по меньшей мере 70 масс.%, более предпочтительно по меньшей мере 90 масс.%, такой как по меньшей мере 95 масс.% композиции сополимера пропилена (Р) по настоящему изобретению. В наиболее предпочтительном варианте воплощения настоящего изобретения покрывающий слой субстрата, покрытого при использовании экструзии, состоит из композиции сополимера пропилена (Р) по настоящему изобретению. Субстрат может представлять собой, например, бумагу, картон, текстиль и металлическую фольгу.

Дополнительно, настоящее изобретение относится к получению композиции сополимера пропилена (Р) по настоящему изобретению. Следовательно, способ получения композиции сополимера пропилена (Р) по настоящему изобретению представляет процесс последовательной полимеризации, включающий использование по меньшей мере двух соединенных в серию реакторов, где указанный способ включает стадии:

(A) полимеризации в первом реакторе (R-1), представляющем суспензионный реактор (SR), предпочтительно циркуляционный реактор (LR), пропилена и по меньшей мере одного C512 α-олефина, предпочтительно 1-гексена, получение сополимера пропилена (А), как указано в описании настоящей патентной заявки, предпочтительно как указанно в любом из пунктов 1,8-10,

(B) перемещение указанного сополимера пропилена (А) и не прореагировавших сомономеров из первого реактора во второй реактор (R-2), представляющий газофазный реактор (GPR-1),

(C) подачу в указанный второй реактор (R-2) пропилена и по меньшей мере одного С512 α-олефина,

(D) полимеризацию в указанном втором реакторе (R-2) и в присутствии указанного первого сополимера пропилена (А) пропилена и по меньшей мере одного С512 α-олефина с получением сополимера пропилена (В), как указано в описании настоящей патентной заявки, предпочтительно как указанно в любом из пунктов 1, 8 или 9, указанный сополимер пропилена (А) и указанный сополимер пропилена (В) образуют композицию сополимера пропилена (Р), как указано в описании настоящей патентной заявки, предпочтительно как указанно в любом из пунктов 1-7,

где дополнительно

в первом реакторе (R-1) и втором реакторе (R-2) полимеризация проходит в присутствии твердой каталитической системы (SCS), указанная твердая каталитическая система (SCS) включает

(i) соединение переходного металла с формулой (I)

R n ( C p ' ) 2 M X 2                                 ( I ) ,

где

«М» представляет цирконий (Zr) или гафний (Hf),

каждый «X» представляет независимо моновалентный анионный σ-лиганд,

каждый «Ср′» представляет органический лиганд циклопентадиенильного типа, независимо выбранный из группы, состоящей из замещенного циклопентадиенила, замещенного инденила, замещенного тетрагидроинденила и замещенного или не замещенного флюоренила, указанные органические лиганды действуют координационно с переходным металлом (М),

«R» представляет бивалентную мостиковую группу, связывающую указанные органические лиганды (Ср′),

«n» представляет 1 или 2, предпочтительно 1, и

(ii) необязательно сокатализатор (Со) включает элемент (Е) из группы 13 периодической таблицы (IUPAC), предпочтительно сокатализатор (Со) включает соединение А1.

Определения композиции сополимера пропилена (Р), полипропилена (А) и сополимера пропилена (В) приведены выше в описании настоящей патентной заявки.

В виду использования в процессе последовательной полимеризации каталитической системы (SCS) возможно получение указанной выше композиции сополимера пропилена (Р). По существу в виду получения сополимера пропилена, то есть сополимера пропилена (А), в первом реакторе (R-1) и перемещения указанного сополимера пропилена и по существу перемещения не прореагировавших сомономеров во второй реактор (R-2) возможно получить композицию сополимера пропилена (Р) с высоким содержанием сомономера в процессе последовательной полимеризации. Как правило, получение сополимера пропилена с высоким содержанием сомономера в процессе последовательной полимеризации приводит к загрязнению или в сложных случаях к блокировке линий транспортировки, поскольку в норме не прореагировавшие сомономеры конденсируются на линиях транспортировки. Однако в новом способе превращение сомономеров повышается и вместе с этим улучшается введение их в полимерную цепочку, что приводит к более высокому содержанию сомономеров и снижению проблем, вызванных прилипанием.

Используемый в описании настоящей патентной заявки термин «процесс последовательной полимеризации» указывает на то, что композицию сополимера пропилена (Р) получают по меньшей мере в двух соединенных в серию реакторах. Более точно, используемый в описании настоящей патентной заявки термин «процесс последовательной полимеризации» указывает на то, что полимер из первого реактора (R-1) непосредственно перемещают с непрореагировавшими сомономерами во второй реактор (R-2). Следовательно, решающий аспект способа по настоящему изобретению представляет получение композиции сополимера пропилена (Р) в двух различных реакторах, где материал реакции первого реактора (R-1) непосредственно перемещают во второй реактор (R-2). Следовательно, способ по настоящему изобретению включает по меньшей мере первый реактор (R-1) и второй реактор (R-2). В одном конкретном варианте воплощения настоящего изобретения способ по настоящему изобретению включает использование двух реакторов полимеризации (R-1) и (R-2). Используемый в описании настоящей патентной заявки термин «реактор полимеризации» относится к месту прохождения основной полимеризации. Следовательно, в случае, когда способ включает использование двух реакторов полимеризации, это определение не исключает, что процесс в целом включает, например, стадию предварительной полимеризации в реакторе предварительной полимеризации. Используемый в описании настоящей патентной заявки термин «включает использование» относится к закрытой формулировке только в отношении основных реакторов полимеризации.

Первый реактор (R-1), предпочтительно суспензионный реактор (SR), может представлять любой реактор непрерывного действия или простой реактор с мешалкой периодического действия, или циркуляционный реактор для проведения полимеризации в массе или в суспензии. В массе - означает полимеризацию в реакционной среде, включающей по меньшей мере 60% (масса/масса), предпочтительно 100% мономера. В настоящем изобретении суспензионный реактор (SR) предпочтительно представляет (для полимеризации в массе) циркуляционный реактор (LR).

Второй реактор (R-2) и любой последующий реактор предпочтительно представляет газофазный реактор (GPR). Такие газофазные реакторы (GPR) могут представлять любые реакторы с механическим перемешиванием или реакторы с псевдоожиженным слоем. Предпочтительно газофазные реакторы (GPR) включают реактор с псевдоожиженным слоем с механическим перемешиванием со скоростью потока газа по меньшей мере 0,2 м/секунду. Следовательно, понятно, что газофазный реактор представляет реактор с псевдоожиженным слоем предпочтительно с механической мешалкой.

Условия (температура, давление, время реакции, подача мономера) в каждом реакторе зависят от заданного продукта и известны специалисту в области техники, к которой относится настоящее изобретение. Как указанно выше, первый реактор (R-1) предпочтительно представляет суспензионный реактор (SR), такой как циркуляционный реактор (LR), в то время как второй реактор (R-2) предпочтительно представляет газофазный реактор (GPR-1). Последующие реакторы, если присутствуют, также представляют газофазные реакторы (GPR).

Предпочтительный многостадийный способ представляет способ «циркуляционно-газофазный», такой как предложенный Borealis A/S, Denmark (известный, как BORSTAR® technology), описанный, например, в патентной литературе, такой как ЕР 0887379 или в WO 92/12182.

Мультимодальные полимеры могут быть получены согласно нескольким способам, описанным, например, в WO 92/12182, ЕР 0887379 и WO 98/58976. Содержание этих документов введено здесь ссылкой.

Предпочтительно в способе получения композиции сополимера пропилена (Р) по настоящему изобретению, как было указанно выше, условия для первого реактора (R-1), то есть суспензионного реактора (SR), такого как циркуляционный реактор (LR), на стадии (А) могут быть следующими:

- температура составляет в пределах от 40°C до 110°C, предпочтительно составляет в пределах от 60°C до 100°C, в пределах от 70°C до 90°C,

- давление составляет в пределах от 20 бар до 80 бар, предпочтительно в пределах от 40 бар до 70 бар,

- для контроля молярной массы может быть добавлен водород при использовании известного способа.

Затем реакционная смесь со стадии (А) перемещается во второй реактор (R-2), то есть газофазный реактор (GPR-1), то есть на стадию (D), при этом условия стадии (D) предпочтительно следующие:

- температура составляет в пределах от 50°C до 130°C, предпочтительно в пределах от 60°C до 100°C,

- давление составляет в пределах от 5 бар до 50 бар, предпочтительно в пределах от 15 бар до 40 бар,

- для контроля молярной массы может быть добавлен водород при использовании известного способа.

Время выдержки может варьировать в обеих реакторных зонах.

В одном варианте воплощения способа получения композиции сополимера пропилена (Р) по настоящему изобретению время выдержки в реакторе полимеризации в массе, например в циркуляционном, составляет в пределах от 0,2 до 4 часов, например, в пределах от 0,3 до 1,5 часов, а время выдержки в газофазном реакторе, как правило, составляет в пределах от 0,2 до 6,0 часов, такое как в пределах от 0,5 до 4,0 часов.

Если требуется, полимеризация может быть проведена известным способом при сверхкритических условиях в первом реакторе (R-1), то есть суспензионном реакторе (SR), таком как циркуляционный реактор (LR), и/или конденсацией в газофазном реакторе (GPR-1).

Условия в других газофазных реакторах (GPR), если присутствуют; аналогичны таковым во втором реакторе (R-2).

Также способ по настоящему изобретению может включать предварительную полимеризацию перед полимеризацией в первом реакторе (R-1). Предварительная полимеризация может быть проведена в первом реакторе (R-1), однако предпочтительно проводить предварительную полимеризацию в отдельном реакторе, так называемом реакторе предварительной полимеризации.

В одном конкретном варианте воплощения настоящего изобретения твердая каталитическая система (SCS) имеет пористость, измеренную согласно ASTM 4641, менее чем 1,40 мл/г и/или площадь поверхности, измеренную согласно ASTM D 3663, менее чем 25 м2/г.

Предпочтительно твердая каталитическая система (SCS) имеет площадь поверхности менее чем 15 м2/г, более предпочтительно менее чем 10 м2/г и наиболее предпочтительно менее чем 5 м2/г, что является наименьшим, измеряемым пределом. Площадь поверхности в настоящем изобретении измеряют согласно ASTM D 3663 (N2).15

В качестве альтернативы или дополнительно, понятно, что твердая каталитическая система (SCS) имеет пористость менее чем 1,30 мл/г и более предпочтительно менее чем 1,00 мл/г. Пористость измеряют согласно ASTM 4641 (N2). В другом предпочтительном варианте воплощения настоящего изобретения пористость не определима при использовании метода, применяемого согласно ASTM 4641 (N2).

Дополнительно, твердая каталитическая система (SCS), как правило, имеет средний размер частиц более чем 500 µm, то есть предпочтительно в пределах от 2 до 500 µм, более предпочтительно в пределах от 5 до 200 µм. Предпочтительно, чтобы средний размер частиц составлял менее 80 µм, еще более предпочтительно менее 70 µм. Предпочтительные пределы среднего размера частиц составляют от 5 до 70 µм или даже от 10 до 60 µм.

Как указанно выше, переходный металл (М) представляет цирконий (Zr) или гафний (Hf), предпочтительно цирконий (Zr).

Используемый в описании настоящей патентной заявки термин "σ-лиганд" имеет общепринятое значение, то есть группа, связанная с металлом сигма-связью. Следовательно, анионные лиганды «X» могут представлять независимо галоген или выбраны из группы, состоящей из R′, OR′, S i R 3 ' , O S i R 3 ' , OSO2CF3, OCOR′, SR′, N R 2 ' или P R 2 ' группы; где каждый R′ представляет независимо водород, линейный или разветвленный, циклический или ациклический, С1-C20 алкил, С220 алкенил, С220 алкинил, С312 циклоалкил, С6-C20 арил, С720 арилалкил, С7-C20 алкиларил, C8-C20 арилалкенил, где группа R′ необязательно может содержать один или более гетероатом, принадлежащий к группам 14-16. В предпочтительных вариантах воплощения настоящего изобретения анионные лиганды «X» идентичны и представляют или галоген, такой как Cl, или метил, или бензил.

Предпочтительным моновалентным анионным лигандом является галоген, в частности хлор (Cl).

Лиганд(ы) типа замещенного циклопентадиенила могут иметь один или более заместитель(и), выбранный из группы, состоящей из галогена, нециклического углеводородного остатка (например, С120 алкила, C2-C20 алкенила, C220 алкинила, С3-C20 циклоалкила, такого как C1-C20 алкил, замещенный C520 циклоалкилом, С6-C20 арила, С5-C20 циклоалкила, замещенного C1-C20 алкилом, где циклоалкильный остаток замещен C120 алкилом, С720 арилалкила, С3-C12 циклоалкила, который содержит 1, 2, 3 или 4 гетероатома в кольцевой функциональной группе, С620 гетероарила, C120 галоалкила, S i R 3 ' ' , -SR″, P R 2 ' ' , или N R 2 ' ' , где каждый R″ представляет независимо водород или нециклический углеводородный остаток (например, C120 алкил, C2-C20 алкенил, C2-C20 алкинил, С312 циклоалкил или С620 арил) или, например, в случае, N R 2 ' ' два заместителя R″ могут образовывать кольцо, например, пяти- или шестичленное кольцо вместе с атомом азота, с которым они связаны.

Дополнительно, «R» (формулы (I) предпочтительно представляет мостик из 1-4 атомов, такие атомы независимо представляют атом(ы) углерода (С), кремния (Si), германия (Ge) или кислорода (О), при этом каждый из атомов мостика может независимо нести заместители, такие как С120 нециклический углеводородный остаток, три(С120 алкил)силил, три(С1-C20 алкил)силокси, и более предпочтительно «R» представляет один атом мостика, такой как, например, S i R 2 ' ' ' , где каждый R″′ представляет независимо C1-C20 алкил, C2-C20 алкенил, C2-C20 алкинил, С3-C12 циклоалкил, С620 арил, алкиларил или арилалкил, или остаток три(С1-C20 алкил)силила, такой как триметилсилил, или два R″′ могут быть частью кольцевой системы, включающей атом мостика Si.

В предпочтительном варианте воплощения настоящего изобретения соединение переходного металла имеет формулу (II)

где

М представляет цирконий (Zr) или гафний (Hf), предпочтительно цирконий (Zr),

Х представляет лиганды, соединенные σ-связью с металлом «М», предпочтительно указанные выше для формулы (I),

предпочтительно хлор (Cl) или метил (СН3), первый по существу предпочтителен,

R1 представляет идентичные или отличающиеся друг от друга, предпочтительно идентичные, выбранные из группы, состоящей из линейного насыщенного C120 алкила, линейного ненасыщенного C120 алкила, разветвленного насыщенного C1-C20 алкила, разветвленного ненасыщенного С120 алкила, С320 циклоалкила, С6-C20 арила, C7-C20 алкиларила и C7-C20 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),

предпочтительно представляет идентичные или отличающиеся друг от друга, предпочтительно идентичные, представляющие C120 линейный разветвленный нециклический углеводородный остаток, более предпочтительно представляет идентичные или отличающиеся друг от друга, предпочтительно идентичные, представляющие C16 линейный или разветвленный алкил,

R2-R6 представляет идентичные или отличающиеся друг от друга, выбранные из группы, состоящей из водорода, линейного насыщенного C1-C20 алкила, линейного ненасыщенного С1-C20 алкила, разветвленного насыщенного С1-C20 алкила, разветвленного ненасыщенного С1-C20 алкила, С3-C20 циклоалкила, С6-C20 арила, С7-C20 алкиларила и С7-C20 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),

предпочтительно представляет идентичные или отличающиеся друг от друга, представляющие линейный насыщенный С1-C10 алкил или разветвленный нециклический углеводородный остаток, более предпочтительно представляет идентичные или отличающиеся друг от друга, представляющие линейный С1-C6 алкил или разветвленный алкил,

R7 и R8 представляют идентичные или отличающиеся друг от друга, выбранные из группы, состоящей из водорода, линейного насыщенного С1-C20 алкила, линейного ненасыщенного С1-C20 алкила, разветвленного насыщенного С1-C20 алкила, разветвленного ненасыщенного С1-C20 алкила, С3-C20 циклоалкила, С6-C20 арила, С7-C20 алкиларила, С7-C20 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC), S i R 3 10 , G e R 3 10 , OR10, SR10 и N R 2 10 ,

где

R10 выбран из группы, состоящей из линейного насыщенного С1-C20 алкила, линейного ненасыщенного С1-C20 алкила, разветвленного насыщенного С1-C20 алкила, разветвленного ненасыщенного С1-C20 алкила, С3-C20 циклоалкила, С6-C20 арила, С7-C20 алкиларила и С7-C20 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),

и/или

R7 и R8 необязательно представляют часть кольцевой углеродной системы С420 вместе с инденильными углеродами, с которыми они связаны, предпочтительно С5 кольцо, необязательно один атом углерода может быть замещен атомом азота, серы или кислорода,

R9 представляет идентичные или отличающиеся друг от друга и выбранные из группы, состоящей из водорода, линейного насыщенного С1-C20 алкила, линейного ненасыщенного С1-C20 алкила, разветвленного насыщенного С1-C20 алкила, разветвленного ненасыщенного С1-C20 алкила, С3-C20 циклоалкила, С6-C20 арила, С7-C20 алкиларила, С7-C20 арилалкила, OR10 и SR10,

предпочтительно R9 представляет идентичные или отличающиеся друг от друга и представляет Н или СН3,

где

R10 представляет, как указанно выше,

L представляет бивалентную группу, связывающую мостиком два инденильных лиганда, предпочтительно представляет C 2 R 11 4 остаток или S i R 2 11 или G e R 2 11 , где

R11 выбран из группы, состоящей из Н, линейного насыщенного С1-C20 алкила, линейного ненасыщенного С1-C20 алкила, разветвленного насыщенного С1-C20 алкила, разветвленного ненасыщенного С1-C20 алкила, С3-C20 циклоалкила, С6-C20 арила, С7-C20 алкиларила и С7-C20 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),

предпочтительно Si(СН3)2, SiCH3C6H11 или SiPh2,

где С6Н11 представляет циклогексил.

Предпочтительно соединение переходного металла формулы (II) представляет симметричный C2 или псевдосимметричный C2. Определение симметрии приведено в Resconi et al. Chemical Reviews, 2000, Vol.100, No. 4 1263, которая введена здесь ссылкой.

Предпочтительно остатки R1 представляют идентичные или отличающиеся друг от друга, предпочтительно идентичные, выбранные из группы, состоящей из линейного насыщенного С1-C10 алкила, линейного ненасыщенного С1-C10 алкила, разветвленного насыщенного С1-C10 алкила, разветвленного ненасыщенного С1-C10 алкила и С7-C12 арилалкила. Более предпочтительно остатки R1 представляют идентичные или отличающиеся друг от друга, более предпочтительно идентичные, выбранные из группы, состоящей из линейного насыщенного C16 алкила, линейного ненасыщенного C16 алкила, разветвленного насыщенного C16 алкила, разветвленного ненасыщенного С16 алкила и С710 арилалкила. Еще более предпочтительно остатки R1 представляют идентичные или отличающиеся друг от друга, предпочтительно идентичные, и выбраны из группы, состоящей из линейного или разветвленного C1-C4 нециклического углеводородного остатка, такого как, например, метил или этил.

Предпочтительно остатки R2-R6 представляют идентичные или отличающиеся друг от друга линейный насыщенный C1-C4 алкил или разветвленный насыщенный C1-C4 алкил. Еще более предпочтительно остатки R2-R1 представляют идентичные или отличающиеся друг от друга, предпочтительно идентичные, выбранные из группы, состоящей из метила, этила, изопропила и трет-бутила.

Предпочтительно R7 и R8 представляют идентичные или отличающиеся друг от друга, выбранные из группы, состоящей из водорода и метила, или они представляют часть 5-метиленового кольца, включающего два инденильных углеродных кольца, с которым они связаны. В другом предпочтительном варианте воплощения настоящего изобретения R7 выбран из ОСН3 и OC2H5, a R8 представляет трет-бутил.

В предпочтительном варианте воплощения настоящего изобретения соединение переходного металла представляет рац-метил(циклогексил)силанедил бис(2-метил-4-(4-трет-бутилфенил)инденил)циркония дихлорид.

Во втором предпочтительном варианте воплощения настоящего изобретения соединение переходного металла представляет рац-диметилсиланедил бис(2-метил-4-фенил-1,5,6,7-тетрагидро-s-индацен-1-ил) циркония дихлорид.

В третьем предпочтительном варианте воплощения настоящего изобретения соединение переходного металла представляет рац-диметилсиланедил бис(2-метил-4-фенил-5-метокси-6-трет-бутилинденил)циркония дихлорид.

Учитывая дополнительное требование, твердая каталитическая система (SCS) по настоящему изобретению должна включать сокатализатор (Со), включающий элемент (Е) группы 13 периодической таблицы (IUPAC), например, сокатализатор (Со) включает соединение Al.

Примерами таких сокатализаторов (Со) являются алюминийорганические соединения, такие как соединения алюмоксана.

Такие соединения Al, предпочтительно алюмоксаны, могут быть использованы только в качестве соединений в сокатализаторе (Со) или вместе с другим сокаталитическим(ими) соединением(ами). Таким образом, помимо или дополнительно к соединениям Al, то есть алюмоксанам, может быть использован другой катионный комплекс, образующий сокаталитические соединения, такие как соединения бора. Указанные сокатализаторы коммерчески доступны или могут быть получены согласно предшествующему уровню техники. Однако предпочтительно использовать в качестве сокатализатора (Со) при получении твердой каталитической системы только соединения Al.

По существу предпочтительными сокатализаторами (Со) являются алюмоксаны, в частности С110-алкилалюмоксаны, наиболее предпочтительны метилалюмоксаны (МАО).

Предпочтительно цирконийорганическое соединение формулы (I) и сокатализатор (Со) твердой каталитической системы (SCS) составляют по меньшей мере 70 масс.%, более предпочтительно по меньшей мере 80 масс.%, еще более предпочтительно по меньшей мере 90 масс.%, и еще более предпочтительно по меньшей мере 95 масс.% твердой каталитической системы. Следовательно, понятно, что твердая каталитическая система характеризуется тем, что является самодостаточной, то есть не включает какой-либо каталитически инертный материал-носитель, такой как, например, кремний, алюминий или MgCl2 или пористый полимерный материал, которые в иных случаях традиционно используют в гетерогенных каталитических системах, то есть катализатор не наносят на внешний носитель или материал-носитель. Это является следствием того, что твердая каталитическая система (SCS) является самодостаточной и имеет достаточно низкую площадь поверхности.

В одном варианте воплощения настоящего изобретения твердую металлоценовую каталитическую систему (SCS) предпочтительно получают при использовании технологии отверждения эмульсии, основные принципы которой описаны в WO 03/051934. Документ введен здесь ссылкой в полном объеме.

Следовательно, твердая каталитическая система (SCS) предпочтительно имеет форму твердых каталитических частиц, полученных способом, включающим стадии:

a) получение раствора одного или более каталитического компонента;

b) диспергирование указанного раствора во втором растворителе с получением эмульсии, в которой указанный один или более каталитический компонент присутствует в виде капель диспергированной фазы,

c) отверждение указанной диспергированной фазы с превращением указанных капель в твердые частицы и необязательно с извлечением указанных частиц с получением указанного катализатора.

Предпочтительно для получения раствора используют первый растворитель, более предпочтительно первый органический растворитель. Еще более предпочтительно органический растворитель выбирают из группы, состоящей из линейного алкана, циклического алкана, ароматического углеводорода и галогенсодержащего углеводорода.

Дополнительно, второй растворитель, образующий непрерывную фазу, представляет растворитель, инертный в отношении каталитических компонентов. Второй растворитель может не смешиваться с раствором каталитических компонентов по меньшей мере при условиях (таких как температура) стадии диспергирования. Используемый в описании настоящей патентной заявки термин «не смешиваемый с раствором катализатора» означает, что второй растворитель (непрерывная фаза) полностью не смешивается или частично не смешивается, то есть не полностью смешивается с диспергированной фазой раствора.

Предпочтительно не смешиваемый растворитель включает фторированный органический растворитель и/или их функционализированные производные, более предпочтительно не смешивающийся растворитель включает полу-, сильно- или перфторированный углерод и/или их функционализированное производное. Наиболее предпочтительно указанный не смешивающийся растворитель включает перфторуглерод или его функционализированное производное, предпочтительно С330 перфторалканы, -алкены или -циклоалканы, еще более предпочтительно С410 перфторалканы, -алкены или -циклоалкены, по существу предпочтительно перфторгексан, перфторгептан, перфтороктан или перфтор(метилциклогексан) или перфтор (1,3-диметилциклогексан) или их смесь.

Дополнительно, предпочтительно, чтобы эмульсия, включающая указанную непрерывную фазу и указанную диспергированную фазу, представляла би- или мультифазную систему, известную из предшествующего уровня техники. Для образования и стабилизации эмульсии может быть использован эмульгатор. После образования эмульсионной системы в указанном растворе, из компонентов катализатора образуется указанный катализатор.

В принципе эмульгирующий агент может представлять любой подходящий агент, участвующий в образовании и/или стабилизации эмульсии и не оказывающий какого-либо негативного воздействия на каталитическую активность катализатора. Эмульгирующий агент может представлять, например, поверхностно-активное вещество на основе углеводородов, необязательно разомкнутых гетероатомом(ами), предпочтительно галогенированные углеводороды, необязательно имеющие функциональную группу, предпочтительно полу-, сильно- или перфторированные углеводороды, известные из предшествующего уровня техники. В качестве альтернативы, эмульгирующий агент может быть получен в процессе получения эмульсии, например, за счет прохождения реакции предшественника поверхностно-активного вещества с соединением раствора катализатора. Указанный предшественник поверхностно-активного вещества может представлять галогенированный углеводород по меньшей мере с одной функциональной группой, например, сильно фторированный C1-n (подходят С4-30- или C5-15), спирт (например, сильно фторированный гептанол, октанол или нонанол), оксид (например, пропеноксид) или эфир акрилата, который реагирует, например, с сокаталитичеким компонентом, таким как алюмоксан, с получением «фактически» поверхностно-активного вещества.

В принципе для получения из диспергированных капель твердых частиц может быть использован любой способ отверждения. В одном предпочтительном варианте воплощения настоящего изобретения отверждение проводят изменением температуры. Эмульсию подвергают постепенному изменению температуры вплоть до 10°C/минуту, предпочтительно в пределах от 0,5 до 6°C/минуту и более предпочтительно в пределах от 1 до 5°C/минуту. Еще более предпочтительно эмульсию подвергают постепенному изменению температуры на более чем 40°C, предпочтительно на более чем 50°C за менее чем 10 секунд, предпочтительно за менее чем 6 секунд.

Более детальные варианты воплощения и примеры системы с непрерывной и диспергированной фазой, способа получения эмульсии, эмульгирующего агента и способов отверждения приведены, например, в приведенной ссылкой в настоящей патентной заявке международной патентной заявке WO 03/051934.

Все или часть стадий получения могут быть проведены непрерывно. В приведенной ссылке WO 2006/069733 описываются принципы таких непрерывных или полунепрерывных способов получения твердого катализатора, полученного способом эмульсия/отверждение.

Указанные выше компоненты катализатора получены согласно способам, описанным в WO 01/48034.

Дополнительно, настоящее изобретение относится к получению субстратов, покрытых при использовании экструзии, используя традиционный покрывающий слой, полученный при использовании экструзии композиции сополимера пропилена (Р) по настоящему изобретению.

Пленку по настоящему изобретению получают при использовании традиционных способов, например, получение поливной пленки методом полива или получение пленки экструзионно-раздувным формованием. В случае, когда пленка должна растягиваться, то есть двуосноориентированной полипропиленовой пленки, ее предпочтительно получают следующим образом: сначала пленку, полученную методом полива, получают при использовании экструзии композиции сополимера пропилена (Р) в форме гранул. Полученные поливные пленки, как правило, имеют толщину в пределах от 50 до 100 нм для дальнейшего использования в качестве растягивающейся пленки. Затем из множества листов поливных пленок может быть получен стек (сборка) определенной толщины, например, в пределах от 700 до 1000 нм. Как правило, температура вытяжения составляет немного меньшую, чем температура плавления, например, в пределах на от 2 до 4°C ниже температуры плавления, и пленку вытягивают при определенной скорости вытяжения в продольном и поперечном направлении.

Нанесение покрывающего слоя при использовании экструзии может быть проведено при использовании традиционных технологий нанесения покрывающего слоя при использовании экструзии. Следовательно, композицию сополимера пропилена (Р), полученную при использовании указанного выше процесса полимеризации, подают, как правило, в форме гранул, необязательно содержащих добавки, в устройство для экструзии. Из экструдера расплавленный полимер через щелевую головку проходит на покрываемый субстрат. Из-за расстояния между мундштуком экструзионной головки и зажимом расплавленный пластик окисляется на воздухе за короткий период, как правило, позволяя достичь лучшей адгезии между покрывающим слоем и субстратом. Покрытый субстрат охлаждают на охлаждающем валу, после чего пропускают через устройство для обрезки кромки и наматывают на вал. Ширина линии может варьировать, например, в пределах от 500 до 1500 мм, например, в пределах от 800 до 1100 мм, скорость линии составляет вплоть до 1000 м/минуту, например, в пределах от 300 до 800 м/минуту. Температура расплава полимера, как правило, составляет в пределах от 275 до 330°C. Композиция сополимера пропилена (Р) по настоящему изобретению может быть экструдирована на субстрат в виде монослойного покрытия или как один слой при коэкструзии. В любом из этих случаев можно использовать композицию сополимера пропилена (Р), как таковую, или при смешивании композиции сополимера пропилена (Р) с другими полимерами. Смешивание может быть проведено как постреакторная обработка или непосредственно перед экструзией в процессе нанесения покрытия. Однако предпочтительно, чтобы только композиция сополимера пропилена (Р) по настоящему изобретению экструдировалась в качестве покрывающего слоя. При многослойной экструзии покрывающего слоя, другие слои могут включать любую полимерную смолу с заданными свойствами и технологичностью. Примеры таких полимеров включают: барьерный слой РА (полиамид) и этилен-винил-ацетат (EVA); полярные сополимеры этилена, такие как сополимеры этилена и винилового спирта (EVOH), или сополимеры этилена и мономеры акрилата; адгезионные слои, например, иономеры, сополимеры этилена и этил акрилата и тому подобное; HDPE для жесткости; LDPE смолы, полученные при использования способа под высоким давлением; LLDPE смолы, полученные полимеризацией этилена и сомономеров альфа-олефина в присутствии катализатора Циглера, хромового или металлоценового катализатора; и MDPE смолы.

Следовательно, предпочтительно настоящее изобретение относится к субстрату, покрытому при использовании экструзии, включающему субстрат и по меньшей мере один слой композиции сополимера пропилена (Р), покрывающий указанный в описании настоящей патентной заявки выше субстрат при использовании экструзии.

Дополнительно, настоящее изобретение также относится к применению изделия по настоящему изобретению в качестве упаковочного материала, в частности, в качестве упаковочного материала для пищевых продуктов и/или лекарственных средств.

Далее настоящее изобретение будет описано со ссылкой на следующие Примеры.

ПРИМЕРЫ

А. Методы измерения.

Для приведенного выше описания настоящего изобретения, если ясно не указанно иное, наряду с приведенными ниже Примерами применяют следующие определения терминов и методы определения.

Количественный анализ микроструктуры при использовании ЯМР спектроскопии.

Количественную спектроскопию ядерно-магнитного резонанса (ЯМР) используют для оценки изотактичности, региорегулярности и содержания сомономера в полимерах.

Количественный анализ 13С{1Н} ЯМР спектра записывают в состоянии расплава при использовании ЯМР спектрометра Bruker Advance III 500, работающего на частотах в пределах от 500,13 до 125,76 МГц для 1Н и 13С, соответственно. Весь спектр записывают при использовании 13С оптимизированного 7 мм датчика измерения линейных величин под магическим углом вращения (MAS) при температуре 180°C при использовании во всей пневматике газообразного азота. Около 200 мг материала помещают в циркониевый MAS ротор с внешним диаметром 7 мм и скручивают при 4 кГц. Создают стандартное одноимпульсное возбуждение при использовании NOE (ядерный эффект Оверхауза) с кратковременной задержкой повторного цикла (как описано в Pollard, M., Klimke, K., Graf, R., Spiess, H.W., Wilhelm, M., Sperber, O., Piel, С., Kaminsky, W., Macromolecules 2004, 37, 813, и в Klimke, K., Parkinson, M., Piel, C., Kaminsky, W., Spiess, H.W., Wilhelm, M., Macromol. Chem. Phys. 2006, 207, 382) и схемой развязки RS-HEPT (как описано в Filip, X., Tripon, С., Filip, С., J. Mag. Resn. 2005, 176, 239, and in Griffin, J.M., Tripon, C., Samoson, A., Filip, C., and Brown, S.P., Mag. Res. in Chem. 2007, 45, S1, S198). Всего для спектра потребовалось 1024 (1к) импульсов.

Проводят количественный анализ на основе 13С{1Н} ЯМР спектра с определенным средним значением и определяют соответствующие количественные значения при использовании интеграла. Все химические сдвиги внутренне привязаны к метиловой изотактической пентаде (mmmm) при 21,85 частей на миллион.

Регулярность распределения молекулярной структуры количественно определяют через интеграцию метильной области в 13С{1Н} спектре с поправкой на любой сигнал, не связанный с первично встроенными (1,2) пропеновыми стереопоследовательностями, как описано в Busico, V., Cipullo. R., Prog. Polym. Sci. 2001, 26, 443 и в Busico, V., Cipullo, R., Monaco, G., Vacatello, M., Segre, A.L., Macromolecules 1997, 30, 6251.

Наблюдаются характерные сигналы, соответствующие региодефектам (Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253). Воздействие региодефектов на количественный анализ регулярности распределения молекулярной структуры корректируют, вычитая интегралы репрезентативного региодефекта из конкретной области интеграла стереопоследовательностей.

Изотактичность определяют по уровню триад и указывают, как процент последовательностей изотактических триад mm от последовательностей всех триад;

mm %=(mm/(mm+mr+rr))*100

Наблюдаются характерные сигналы, соответствующие введению 1-гексена, и содержание 1-гексена рассчитывают, как молярный процент 1-гексена в полимере, Н( мол.%), согласно:

[H]=Htot/(Ptot+Htot),

где:

Htot=I(αB4)/2+I(ααВ4)×2,

где I(α В4) представляет интеграл α B4 участков при 44,1 частей на миллион, который определяет изолированный 1-гексен, введенный в РРНРР последовательности, и I(ααВ4) представляет интеграл ααВ4 участков при 41,6 частей на миллион, который определяет последовательно введенный 1-гексен в РРННРР последовательности.

Ptot = интеграл всех СН3 площадей метиловой области с поправкой, применяемой при недооценке других пропеновых единиц, не учтенных в этой области, и переоценке из-за других участков, обнаруженных в этой области.

и Н (мол.%) = 100×[Н].

которые затем переводят в масс.% при использовании корреляции

Н (масс.%) = (100×Н мол.% × 84,16)/(Н мол.% × 84,16+(100-Н мол.%) × 42,08)

Статистическое распределение рассчитывают исходя из соотношения содержания гексена, присутствующего в изолированной (РРНРР) и консекутивной (РРННРР) последовательностях введенного сомономера:

[НН]<[Н]2

Расчет содержания сомономера в сополимере пропилена (В):

C ( C P P ) w ( A ) × C ( A ) = C ( B ) w ( B ) ,

где

w(A) представляет массу фракции полипропилена (А),

w(B) представляет массу фракции сополимера пропилена (В),

С(А) - содержание сомономера [в масс.%], измеренное при использовании 13С ЯМР спектроскопии полипропилена (А), то есть продукт из первого реактора (R1),

С(СРР) - содержание сомономера [в масс.%], измеренное при использовании 13С ЯМР спектроскопии продукта, полученного во втором реакторе, то есть смесь полипропилена (А) и сополимера пропилена(В) [композиция сополимера пропилена (Р)],

С(В) - рассчитанное содержание сомономера [в масс.%] в сополимере пропилена (В).

Mw, Mn, MWD.

Mw/Mn/MWD измеряют при использовании гельпроникающей хроматографии (GPC) согласно следующему методу.

Среднемассовую молекулярную массу (Mw), среднечисловую молекулярную массу (Mn) и распределение молекулярной массы (MWD=Mw/Mn) измеряют при использовании способа, основанного на ISO 16014-1:2003 и ISO 16014-4:2003. Используют устройство Waters Alliance GPCV 2000 с рефрактометрическим детектором и онлайн вискозиметром при использовании колонок 3 × TSK-gel (GMHXL-HT) от TosoHaas и 1,2,4-трихлорбензола (ТСВ, стабилизированный 200 мг/л 2,6-дитретбутил-4-метил-фенолом) в качестве растворителя при температуре 145°C и постоянной скорости потока 1 мл/минуту. Для анализа инжектируют 216,5 µл образца раствора. Колонку калибруют при использовании относительной калибровки по узким 19 MWD стандартам полистирола (PS) в пределах от 0,5 кг/моль до 11,500 кг/моль и хорошо изученным широким стандартам полипропилена. Все образцы получают, растворяя в пределах от 5 до 10 мг полимера в 10 мл (при 160°C) стабилизированного ТСВ (такой же, как мобильная фаза) и выдерживают в течение 3 часов с непрерывным перемешиванием перед забором образцов в устройство для GPC.

Скорость течения расплава (MFR)

Скорость течения расплава измеряют при нагрузке 2,16 кг (MFR2) при 230°C. Скорость течения расплава представляет то количество полимера в граммах, которое устройство, стандартизованное для тестирования согласно ISO 1133, экструдирует в течение 10 минут при температуре 230°C при нагрузке 2,16 кг.

Расчет скорости течения расплава MFR2 (230°C) сополимера пропилена (В):

M F R ( B ) = 10 [ log ( M F R ( P ) ) w ( A ) [ log ( M F R ( A ) ) ] W ( B ) ,

где

w(A) представляет массу фракции полипропилена (А),

w(B) представляет массу фракции сополимера пропилена (В),

MFR(A) представляет скорость течения расплава MFR2 (230°C) [в г/1-минут], измеренную согласно ISO 1133, полипропилена (А),

MFR(P) представляет скорость течения расплава MFR2 (230°C) [в г/1-минут], измеренную согласно ISO 1133, композиции сополимера пропилена (Р),

MFR(B) представляет рассчитанную скорость течения расплава MFR2 (230°C) [в г/1-минут], измеренную согласно ISO 1133, сополимера пропилена (В).

Фракция, растворимая в холодном ксилоле (XCS масс.%).

Фракцию, растворимую в холодном ксилоле (XCS), определяют при температуре 23°C согласно ISO 6427.

Фракция, растворимая в гексане

FDA часть 177.1520

В 400 мл гексана с температурой 50°C добавляют 1 г полимерной пленки толщиной 100 µм и перемешивают в течение 2 часов при использовании дефлегматора.

Через 2 часа смесь фильтруют при использовании бумажного фильтра №41.

Преципитат собирают в алюминиевый приемник и выпаривают остаток гексана на водяной бане с потоком N2.

Количество фракции, растворимой в гексане, определяют при использовании формулы:

((масса образца + масса емкости)-(масса емкости))/(масса образца)·100.

Температуру плавления Tm, температуру кристаллизации Tc определяют при использовании калориметра Mettler TA820 с проведением дифференциальной сканирующей калориметрии (DSC) 5-10 мг образцов. Обе кривые и кристаллизации и плавления получают при показателе 10°C/минуту на сканограммах нагревания и охлаждения в пределах от 30°C до 225°C. Температуры кристаллизации и плавления берут как пики эндотерм и экзотерм.

Также при использовании способа DSC согласно ISO 11357-3 измеряют энтальпию плавления и кристаллизации (Hm и Hc).

Пористость: BET с газообразным N2, ASTM 4641, устройство Micromeritics Tristar 3000; подготовка образцов: при температуре 50°C, 6 часов под вакуумом.

Площадь поверхности: BET с газообразным N2 ASTM D 3663, устройство Micromeritics Tristar 3000: подготовку образца проводят при температуре 50°C, 6 часов под вакуумом.

Модуль упругости при растяжении измеряют при использовании образцов, полученных литьем под давлением.

Модуль упругости при растяжении в продольном и в поперечном направлении измеряют согласно ISO 527-3 на пленках толщиной 100 цµ при скорости крейцкопфа 1 мм/минуту. Затем определяют удлинение к моменту разрыва в продольном и в поперечном направлении согласно ISO 527-3 при использовании тех же образцов при скорости крейцкопфа 50 мм/мин. Скорость теста изменяют после 0,25% деформации. Используют образцы 2 типа согласно ISO 527-3 в форме полос шириной 15 мм и длиной 200 мм.

Температура начала тепловой сварки (SIT); температура окончания тепловой сварки (SET), предел тепловой сварки.

Способ определения пределов температуры тепловой сварки (предел тепловой сварки) полипропиленовых пленок, в частности пленок, полученных экструзионно-раздувным формованием или поливных пленок. Пределы температуры тепловой сварки представляют пределы температуры, при которой пленки могут быть сварены тепловой сваркой согласно приведенным ниже условиям. Нижний предел (температура начала тепловой сварки (SIT)) представляет температуру тепловой сварки, при которой достигается адгезионная способность >3 Н. Верхний предел (температура окончания тепловой сварки (SET)) достигается, когда пленки прилипают к устройству для тепловой сварки.

Пределы тепловой сварки определяют при использовании устройства J&B Universal Sealing Machine Type 3000 при использовании пленки толщиной 100 µм по следующим параметрам:

Ширина образца 25,4 мм Давление при тепловой сварке 0,1 Н/мм2 Время тепловой сварки 0,1 с Время охлаждения 99 с Скорость отслаивания 10 мм/с Температура начала 80°C Температура окончания 150°C Шаг 10°C

Образец сваривают тепловой сваркой А к А при каждой температуре запаивающей пластины и для каждой стадии определяют адгезионную способность (силу).

Определяют температуру, при которой адгезионная способность достигает 3 Н.

Прочность горячего шва.

Прочность горячего шва определяют при использовании устройства для тестирования J&B Hot Tack Tester при использовании пленки толщиной 100 µм по следующим параметрам:

Ширина образца 25,4 мм Давление при тепловой сварке 0,3 Н/мм2 Время тепловой сварки 0,5 с Время охлаждения 99 с Скорость отслаивания 200 мм/с Температура начала 90°C Температура окончания 140°C Шаг 10°C

Определяют и записывают максимальную прочность сварного шва, то есть максимум диаграммы сила/температура.

В. Примеры.

Полимеры, приведенные в Таблице 1, получены в пилотной установке Borstar РР при использовании процесса двухстадийной полимеризации, сначала полимеризация в массе в циркуляционном реакторе с последующей полимеризацией в газофазном реакторе, варьируя молекулярную массу наряду с содержанием этилена и гексена за счет подходящей подачи водорода и сомономера. В процессе полимеризации используют металлоценовый катализатор, описанный в Примере 1 ЕР 1741725 A1.

Таблица 1 Примеры получения СЕ1 СЕ2 IE1 IE2 IE3 IE4 Циркуляционный MFR2 [г/10 минут] 6,0 0,9 7,9 7,4 10,3 9,5 Mw [кг/моль] 460 820 365 380 265 322 С6 [масс.%] 0,0 0,0 3,5 1,3 2,2 2,9 С2 [масс.%] 2,4 0,0 0,0 0,0 0,0 0,0 XCS [масс.%] 1,8 0,7 0,8 1,4 1,1 0,7 GPR MFR2 [г/10 минут] 5,8 67,4 6,8 4,8 5,5 5,7 С6 [масс.%] 0,0 5,2 13,0 4,1 6,9 9,3 С2 [масс.%] 3,8 0,0 0,0 0,0 0,0 0,0

XCS [масс.%] 6,2 1,4 14,6 1,2 1,5 9,5 Сплит (количество полимера, полученного в соответствующем реакторе, отнесенное к общей массе) циркуляционный/GPR [%] 59/41 42/58 74/26 59/41 64/36 69/31 Конечный С6 [масс.%] 0,0 3,0 6,0 2,4 3,9 4,9 С2 [масс.%] 3,0 0,0 0,0 0,0 0,0 0,0 XCS [масс.%] 3,7 1,1 14,6 1,3 1,3 3,4 Гексан [масс.%] 1,5 1,5 1,3 0,9 0,8 1,0 MFR2 [г/10 минут] 5,9 11,0 7,6 6,2 8,1 8,1 Mw [кг/моль] - - 208 192 206 183 MWD [-] 3,0 - 2,9 2,8 3,0 2,7 Tm [°C] 135 147 128 138 134 131 Tc [°C] 99 106 93 104 98 97

Циркуляционный - получение полипропилена (А)

GPR - получение сополимера пропилена (В)

Конечный - получение сополимера пропилена (Р)

С6 представляет содержание 1-гексена

С2 представляет содержание этилена

Таблица 2 Свойства по Примерам СЕ1 СЕ2 IE1 IE2 IE3 IE4 Конечный TM (MD) [мПа] 482 589 413 606 527 485

TM (TD) [мПа] 497 582 418 617 525 483 SIT [°C] 112 112 96 116 110 104 SET [°C] 120 126 118 128 122 120 SET-SIT [°C] 8 14 22 12 12 16 ST [°C] 105 120 85 98 90 85 HTF [H] 1,4 3,2 3,6 2,6 3,3 3,4 TPE [Дж/мм] 16,0 8,3 16,3 17 14,7 16,6

TM (MD) представляет упругость при растяжении в продольном направлении TM (TD) представляет упругость при растяжении в поперечном направлении SIT представляет температуру начала тепловой сварки SET представляет температуру окончания тепловой сварки SET-SIT представляет разницу SET и SIT ST представляет температуру тепловой сварки HTF представляет прочность сварного шва TPE представляет общую энергию излучения

Похожие патенты RU2541470C9

название год авторы номер документа
КОМПОЗИЦИЯ СОПОЛИМЕРА ПРОПИЛЕНА/1-ГЕКСЕНА С ШИРОКИМ ОКНОМ ТЕПЛОВОЙ СВАРКИ 2011
  • Паавилайнен Юха
  • Дошев Петар
  • Реихельт Кристин
  • Лескинен Паули
  • Миеттинен Ханну
RU2530491C2
КОМПОЗИЦИЯ ПРОПИЛЕНА С ПОВЫШЕННОЙ УДАРНОЙ ПРОЧНОСТЬЮ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ 2014
  • Тольтш Вильфриед
  • Рескони Луиджи
  • Реихельт Кристин
RU2648673C2
ГЕТЕРОФАЗНЫЙ СОПОЛИМЕР ПРОПИЛЕНА С НИЗКИМ КОЛИЧЕСТВОМ ЭКСТРАГИРУЕМЫХ ВЕЩЕСТВ 2015
  • Ванг Джингбо
  • Дошев Петар
  • Гахлеитнер Маркус
  • Лескинен Паули
RU2653539C2
НОВЫЙ МНОГОСТАДИЙНЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОЛИПРОПИЛЕНА 2010
  • Глогер Дитрих
  • Паавилайнен Юха
RU2526259C2
ПОЛИПРОПИЛЕНОВАЯ СМЕСЬ ДЛЯ ТРУБ 2012
  • Тинис Антти
  • Руэмер Франц
  • Мальм Бо
  • Махль Дорис
RU2560723C1
ГЕТЕРОФАЗНЫЙ СОПОЛИМЕР ПРОПИЛЕНА С ВЫСОКОЙ ТЕМПЕРАТУРОЙ ПЛАВЛЕНИЯ 2015
  • Ванг Джингбо
  • Дошев Петар
  • Гахлеитнер Маркус
  • Лильхья Йоханна
RU2654696C2
МНОГОСЛОЙНАЯ ПОЛИМЕРНАЯ ПЛЕНКА 2014
  • Фиебиг Иоахим
  • Реихельт Кристин
RU2635599C2
Композиция пропиленового сополимера с превосходными оптическими и механическими свойствами 2019
  • Ван Цзинбо
  • Лескинен Паули
  • Галайтнер Маркус
  • Бернрайтнер Клаус
  • Нидерзюсс Петер
RU2775266C1
КОМПОЗИЦИЯ ПРОПИЛЕНА, КОМБИНИРУЮЩАЯ НИЗКУЮ ТЕМПЕРАТУРУ НАЧАЛА СВАРИВАНИЯ, НИЗКУЮ МУТНОСТЬ, НИЗКОЕ СОДЕРЖАНИЕ ВЕЩЕСТВ, РАСТВОРИМЫХ В ГЕКСАНЕ, УЛУЧШЕННОЕ СОПРОТИВЛЕНИЕ РАЗДИРУ И ВЫСОКУЮ ТЕМПЕРАТУРУ ПЛАВЛЕНИЯ 2016
  • Траннингер Корнелия
  • Аластало Кауно
  • Лилья Йоханна
  • Реихельт Кристин
  • Дошев Петар
RU2665707C1
КАБЕЛЬ ЭЛЕКТРОПИТАНИЯ, ВКЛЮЧАЮЩИЙ ПОЛИПРОПИЛЕН 2012
  • Вестберг Торвалд
  • Денифл Петер
  • Хагстранд Пер-Ола
  • Энглунд Виллгот
  • Нилссон Улф
  • Наймарк Андерс
RU2570793C2

Реферат патента 2015 года КОМПОЗИЦИЯ СОПОЛИМЕРА ПРОПИЛЕНА/1-ГЕКСЕНА С НИЗКОЙ ТЕМПЕРАТУРОЙ ТЕПЛОВОЙ СВАРКИ

Изобретение относится к композиции сополимера пропилена, предназначенной для получения изделий, подвергающихся тепловой сварке, ее получению и применению. Композиция содержит сополимер пропилена (А) с содержанием сомономера по меньшей мере 1,0 мас.%, сомономеры представляют С512 α-олефины и сополимер пропилена (В) с содержанием сомономера в пределах от 4,0 до 20,0 мас.%, сомономеры представляют С512 α-олефины. При этом композиция сополимера пропилена (Р) имеет содержание сомономера в пределах от 3,5 до 6,5 мас.%, при содержании сомономера в сополимере пропилена (А) ниже по сравнению с содержанием сомономера в сополимере пропилена (В) и массовом соотношении сополимера пропилена (А) к сополимеру пропилена (В) в пределах от 20/80 до 80/20. Композиция по изобретению характеризуется низкой температурой начала тепловой сварки (SIT) и хорошими механическими свойствами, такими как ударопрочность. 4 н. и 11 з.п. ф-лы, 2 табл., 6 пр.

Формула изобретения RU 2 541 470 C9

1. Композиция сополимера пропилена (Р), предназначенная для получения изделий, подвергающихся тепловой сварке, включающая
(а) сополимер пропилена (А) с содержанием сомономера по меньшей мере 1,0 мас.%, сомономеры представляют С512 α-олефины, и
(b) сополимер пропилена (В) с содержанием сомономера в пределах от 4,0 до 20,0 мас.%, сомономеры представляют С512 α-олефины,
где дополнительно
(i) содержание сомономера в сополимере пропилена (А) ниже по сравнению с содержанием сомономера в сополимере пропилена (В),
(ii) композиция сополимера пропилена (Р) имеет содержание сомономера в пределах от 3,5 до 6,5 мас.%, сомономеры представляют С512 α-олефины,
(iii) массовое соотношение сополимера пропилена (А) к сополимеру пропилена (В) составляет в пределах от 20/80 до 80/20.

2. Композиция сополимера пропилена (Р) по п. 1, где сомономер (Р)/сомономер (А) находятся в пределах от 1,0 до 10,0,
где
сомономер (А) представляет содержание сомономера сополимера пропилена (А), приведенное в массовых процентах [мас.%],
сомономер (Р) представляет содержание сомономера композиции сополимера пропилена (Р), приведенное в массовых процентах [мас.%].

3. Композиция сополимера пропилена (Р) по п. 1 или 2, где композиция сополимера пропилена (Р) удовлетворяет уравнению (I),

где
Tm представляет температуру плавления в градусах Цельсия [°С] композиции сополимера пропилена (Р),
SIT представляет температуру начала тепловой сварки (SIT) в градусах Цельсия [°С] композиции сополимера пропилена (Р).

4. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где композиция сополимера пропилена (Р) имеет температуру начала тепловой сварки (SIT), составляющую не более чем 120°С.

5. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где композиция сополимера пропилена (Р) имеет
(а) скорость течения расплава MFR2 (230°С), измеренную согласно ISO 1133, в пределах от 2,0 до 50,0 г/10 минут, и/или
(b) температуру плавления Tm по меньшей мере 125°С, и/или
(с) содержание фракции, растворимой в холодном ксилоле (ХС8) при температуре 23°С согласно ISO 6427, менее 20,0 мас.%.

6. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где сомономеры выбирают из группы, состоящей из С5 α-олефина, С6 α-олефина, С7 α-олефина, С8 α-олефина, С9 α-олефина, С10 α-олефина, С11 α-олефина и С12 α-олефина, предпочтительно композиция сополимера пропилена (Р) представляет сополимер пропилена 1-гексена.

7. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где композиция сополимера пропилена (Р) имеет распределение молекулярной массы (MWD), измеренное при использовании гельпроникающей хроматографии (GPC), не более чем 4,0.

8. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где соотношение MFR (А)/MFR (Р) составляет в пределах от 0,2 до 10,0,
где
MFR (А) представляет скорость течения расплава MFR2 (230°С) [г/10 минут], измеренную согласно ISO 1133, сополимера пропилена (А),
MFR (Р) представляет скорость течения расплава MFR2 (230°С) [г/10 минут], измеренную согласно ISO 1133, композиции сополимера пропилена (Р).

9. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где сополимер пропилена (А)
(а) включает сомономер в пределах от 1,0 до 4,0 мас.% и/или
(b) имеет скорость течения расплава MFR2 (230°С), измеренную согласно ISO 1133, по меньшей мере 0,5 г/10 минут, и/или
(с) содержание фракции, растворимой в холодном ксилоле (XCS), менее 2,0 мас.%.

10. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где сополимер пропилена (А) и/или сополимер пропилена (В) включает, предпочтительно включает в качестве сомономера только 1-гексен.

11. Композиция сополимера пропилена (Р) по любому из предшествующих пунктов, где композиция сополимера пропилена (Р) получена способом по любому из пп. 14 или 15.

12. Пленка, предпочтительно двуосноориентированная пленка или поливная пленка, полученная из композиции сополимера пропилена (Р) по любому из пп. 1-11.

13. Субстрат, покрытый покрывающим слоем при использовании экструзии, указанный покрывающий слой получен из композиции сополимера пропилена (Р) по любому из пп. 1-11.

14. Способ получения композиции сополимера пропилена (Р) по любому из пп. 1-10, где способ представляет процесс последовательной полимеризации, включающий использование по меньшей мере двух соединенных в серию реакторов, где указанный способ включает стадии:
(А) полимеризации в первом реакторе (R-1), представляющем суспензионный реактор (SR), предпочтительно циркуляционный реактор (LR), пропилена и по меньшей мере одного С512 α-олефина, предпочтительно 1-гексена, с получением сополимера пропилена (А), как указано в любом из пп. 1, 2, 8-10,
(В) перемещение указанного сополимера пропилена (А) и непрореагировавших сомономеров из первого реактора во второй реактор (R-2), представляющий газофазный реактор (GPR-1),
(С) подачу в указанный второй реактор (R-2) пропилена и по меньшей мере одного С410 α-олефина,
(D) полимеризацию в указанном втором реакторе (R-2) и в присутствии указанного первого сополимера пропилена (А) пропилена и по меньшей мере одного С512 α-олефина с получением сополимера пропилена (В), как указано в любом из пунктов 1 или 10, указанный сополимер пропилена (А) и указанный сополимер пропилена (В) образуют композицию сополимера пропилена (Р), как указано в любом из пп. 1-8,
где дополнительно
в первом реакторе (R-1) и втором реакторе (R-2) полимеризация проходит в присутствии твердой каталитической системы (SCS), указанная твердая каталитическая система (SCS) включает
(i) соединение переходного металла с формулой (I)

где
«М» представляет цирконий (Zr) или гафний (Hf),
каждый «X» представляет независимо моновалентный анионный σ-лиганд,
каждый «Ср'» представляет органический лиганд циклопентадиенильного типа, независимо выбранный из группы, состоящей из замещенного циклопентадиенила, замещенного инденила, замещенного тетрагидроинденила и замещенного или незамещенного флюоренила, указанные органические лиганды действуют координационно с переходным металлом (М),
«R» представляет бивалентную мостиковую группу, связывающую указанные органические лиганды (Ср'),
«n» представляет 1 или 2, предпочтительно 1, и
(ii) необязательно сокатализатор (Со) включает элемент (Е) из группы 13 периодической таблицы (UPAC), предпочтительно сокатализатор (Со) включает соединение А1.

15. Способ по п. 14, где соединение переходного металла с формулой (I) представляет цирконийорганическое соединение с формулой (II)

где
М представляет цирконий (Zr) или гафний (Hf), предпочтительно цирконий (Zr),
X представляет лиганды, соединенные σ-связью с металлом «М»,
R1 представляет идентичные или отличающиеся друг от друга, выбранные из группы, состоящей из линейного насыщенного С120 алкила, линейного ненасыщенного С120 алкила, разветвленного насыщенного С120 алкила, разветвленного ненасыщенного С120 алкила, С320 циклоалкила, С620 арила, С720 алкиларила и С720 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),
R2-R6 представляет идентичные или отличающиеся друг от друга, выбранные из группы, состоящей из водорода, линейного насыщенного C120 алкила, линейного ненасыщенного C120 алкила, разветвленного насыщенного C120 алкила, разветвленного ненасыщенного C120 алкила, С320 циклоалкила, С620 арила, С720 алкиларила и С720 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),
R7 и R8 представляют идентичные или отличающиеся друг от друга, выбранные из группы, состоящей из водорода, линейного насыщенного C120 алкила, линейного ненасыщенного C120 алкила, разветвленного насыщенного C120 алкила, разветвленного ненасыщенного C1-С20 алкила, С320 циклоалкила, C620 арила, С720 алкиларила, С720 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC), SiR103, GeR103, OR10, SR10 и NR102,
где
R10 выбран из группы, состоящей из линейного насыщенного C120 алкила, линейного ненасыщенного C120 алкила, разветвленного насыщенного C120 алкила, разветвленного ненасыщенного C120 алкила, С320 циклоалкила, С620 арила, С720 алкиларила и С720 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC),
и/или
R7 и R8 необязательно представляют часть кольцевой углеродной системы С420 вместе с инденильными углеродами, с которыми они связаны, предпочтительно кольцо C5, необязательно один атом углерода может быть замещен атомом азота, серы или кислорода,
R9 представляет идентичные или отличающиеся друг от друга и выбранные из группы, состоящей из водорода, линейного насыщенного C120 алкила, линейного ненасыщенного C120 алкила, разветвленного насыщенного C120 алкила, разветвленного ненасыщенного C120 алкила, С320 циклоалкила, С620 арила, С720 алкиларила, С720 арилалкила, OR10 и SR10,
где
R10 представляет, как указано выше,
L представляет бивалентную группу, связывающую мостиком два инденильных лиганда, L предпочтительно представляет C2R4 остаток или SiR2 или GeR2,
где
R выбран из группы, состоящей из Н, линейного насыщенного C120 алкила, линейного ненасыщенного C120 алкила, разветвленного насыщенного C120 алкила, разветвленного ненасыщенного C120 алкила, С320 циклоалкила, С620 арила, С720 алкиларила или С720 арилалкила, необязательно содержащих один или более гетероатом из групп 14-16 периодической таблицы (IUPAC).

Документы, цитированные в отчете о поиске Патент 2015 года RU2541470C9

Генератор периодических последовательностей импульсов 1974
  • Дениско Михаил Филиппович
  • Дениско Галина Алексеевна
SU560326A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
КОМПОЗИЦИЯ НА ОСНОВЕ КРИСТАЛЛИЧЕСКОГО ПРОПИЛЕНОВОГО СОПОЛИМЕРА, ОТЛИЧАЮЩАЯСЯ УЛУЧШЕННЫМИ СВАРИВАЕМОСТЬЮ И ОПТИЧЕСКИМИ СВОЙСТВАМИ И ПОНИЖЕННОЙ РАСТВОРИМОСТЬЮ 2002
  • Пелликони Антео
  • Гараньяни Энеа
  • Сгарци Паола
RU2294342C2
EP 0 556 815 A1, 25.08.1993
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Способ получения высокомарочного чугуна с пластинчатым графитом 1991
  • Кобелев Николай Иванович
  • Козлов Анатолий Владимирович
  • Крылов Дмитрий Дмитриевич
  • Дибров Олег Иванович
SU1788023A1
Дорожная спиртовая кухня 1918
  • Кузнецов В.Я.
SU98A1

RU 2 541 470 C9

Авторы

Паавилайнен Юха

Дошев Петар

Реихельт Кристин

Даты

2015-02-20Публикация

2011-04-18Подача