СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ ОШИБКИ ПРИ УПРАВЛЕНИИ ДВИЖЕНИЕМ ОБЪЕКТА С ЦЕЛЬЮ ВЫВОДА ЕГО НА ЗАДАННУЮ ТОЧКУ Российский патент 2015 года по МПК G01S13/93 

Описание патента на изобретение RU2543064C1

Изобретение относится к радионавигационным системам и может быть использовано в системах обеспечения посадки летательных аппаратов, в том числе беспилотных, а также в системах обеспечения судовождения. Кроме того, изобретение может быть использовано для обеспечения автоматического возвращения пожарного или иного робота, для обеспечения прицельного десантирования людей или грузов, для обеспечения прицельного сброса воды при тушении пожаров.

Известны способы формирования сигнала ошибки, применяемые в радиотехнических системах посадки самолетов для обеспечения движения самолета по заданной траектории снижения и приземления. [Бакулев П.А., Сосновский А.А. Радионавигационные системы. - М.: Радиотехника, 2011, с.159-181].

Для реализации известных способов летательный аппарат (ЛА) облучают радиосигналами, на борту ЛА сигналы принимают и преобразуют в сигналы угловых отклонений от заданной траектории. Параметры сигналов, содержащие информацию об угловых отклонениях ЛА, формируют с помощью специальных антенн радиомаяков. Обычно радиотехническая система посадки состоит из двух независимых каналов (курсового и глиссадного).

Наиболее близким аналогом заявляемого способа является равносигнальный способ определения отклонений от заданной траектории движения [Бакулев П.А., Сосновский А.А. Радионавигационные системы. - М.: Радиотехника, 2011, с.161-170]. Этот способ применяется в каждом из двух (курсовом и глиссадном) каналов.

В частности, для управления движением ЛА по курсу используют расположенный на оси взлетно-посадочной полосы курсовой равносигнальный радиомаяк.

Формируют два амплитудно-модулированных сигнала с одинаковой несущей частотой, отличающиеся частотами модуляции F1 и F2. Для этих двух сигналов формируют две неподвижные пересекающиеся диаграммы направленности антенной системы радиомаяка. Равносигнальное направление радиомаяка, соответствующее точке пересечения диаграмм направленности, направляют по линии курса, то есть по оси взлетно-посадочной полосы. ЛА облучают с помощью антенной системы двумя амплитудно-модулированными сигналами. На борту ЛА сигналы радиомаяка принимают и детектируют. Сигнал отклонения от линии курса (сигнал ошибки) формируют в зависимости от разности амплитуд полученных в результате детектирования сигналов частот F1 и F2.

Недостатком известного равносигнального способа является необходимость использования высоконаправленных антенных систем. Это приводит к значительным габаритам антенных систем, значительной их массе, к необходимости применения громоздких несущих конструкций и фундаментов для них, а также к невозможности быстрого развертывания антенной системы.

Изобретение направлено на решение задачи формирования сигнала ошибки при обеспечении вывода объекта на заданную точку без применения высоконаправленных антенн, что обеспечивает улучшение массогабаритных характеристик системы и существенное сокращение сроков ее развертывания.

Формирование сигнала ошибки при управлении движением объекта с целью вывода объекта на заданную точку происходит следующим образом.

Формируют первый и второй основные сигналы неравных частот и сигнал частоты сдвига.

Первый основной сигнал и сигнал частоты сдвига преобразуют в частотном преобразователе в первый дополнительный сигнал, частота которого сдвинута относительно частоты первого основного сигнала на частоту сигнала сдвига.

Второй основной сигнал и сигнал частоты сдвига преобразуют в частотном преобразователе во второй дополнительный сигнал, частота которого сдвинута относительно частоты второго основного сигнала на частоту сигнала сдвига.

На объекте управления основные сигналы принимают и преобразуют в основной сигнал разностной частоты, а дополнительные сигналы принимают и преобразуют в дополнительный сигнал разностной частоты.

В момент начала управления движением объекта определяют начальное значение разности фаз основного и дополнительного сигналов разностной частоты.

В последующие моменты определяют текущие значения разности фаз основного и дополнительного сигналов разностной частоты и формируют сигналы ошибки в зависимости от отклонений текущих значений разности фаз основного и дополнительного сигналов разностной частоты от начального значения разности фаз основного и дополнительного сигналов разностной частоты.

Пример реализации предлагаемого способа описан со ссылками на фиг.1, фиг.2, фиг.3 и фиг.4.

На фиг.1 представлена векторная диаграмма, позволяющая определить пространственное расположение линий равных разностей фаз основного и дополнительного сигналов разностной частоты.

На фиг.1 используются следующие обозначения:

A1 - передающая антенна первого радиомаяка, излучающая сигнал частоты ω1;

A2 - передающая антенна второго радиомаяка, излучающая сигнал частоты ω2;

M - точка, вблизи которой должна пройти траектория движения объекта управления (заданная точка);

ОУ - объект управления;

r1, r2 - векторы, начала которых находятся в точках расположения антенн A1 и A2, а концы - в точке расположения объекта управления;

β - угол между векторами r1 и r2;

B - биссектриса угла β;

r 1 0 , r 2 0 - орты векторов r1 и r2.

На фиг.2 показаны линии равных разностей фаз основного и дополнительного сигналов разностной частоты и траектория движения объекта управления.

На фиг.2 используются следующие обозначения:

A1 - точка расположения антенны первого радиомаяка;

A2 - точка расположения антенны второго радиомаяка;

L1, L2, L3, …, LN - линии равных фаз сигнала разностной частоты;

T - траектория движения объекта управления;

M0 - точка, в которой объект управления находился в момент начала управления движением объекта;

L0 - линия равных фаз, проходящая через точку M0;

M - точка, вблизи которой должна пройти траектория движения объекта управления (заданная точка);

V0 - вектор скорости объекта управления в момент начала управления.

На фиг.3 приведен вариант функциональной схемы формирования сигналов радиомаяков.

На фиг.3 используются следующие обозначения:

PM1 - первый радиомаяк;

PM2 - второй радиомаяк;

A1 - передающая антенна первого радиомаяка, излучающая сигналы частот ω1 и ω2доп;

A2 - передающая антенна второго радиомаяка, излучающая сигнал частоты ω2 и ω1доп.

На фиг.4 приведен вариант функциональной схемы бортовой части системы формирования сигнала ошибки.

На фиг.4 используются следующие обозначения:

Aосн - антенна приемника основных сигналов частот ω1 и ω2;

Aдоп - антенна приемника дополнительных сигналов частот ω1доп и ω2доп.

Формирование сигнала ошибки происходит следующим образом.

Формируют первый и второй основные сигналы неравных частот ω1 и ω2 и сигнал частоты сдвига ωсдвига. Формирование сигналов может производиться в синтезаторе частот, как показано на фиг.3.

Мгновенные значения ψ1(t) и ψ2(t) фаз основных сигналов определяются выражениями:

ψ1(t)=ω1t-ψ01;

ψ2(t)=ω2t-ψ02,

где t - текущее время;

ψ01 - начальная фаза первого основного сигнала;

ψ02 - начальная фаза второго основного сигнала.

Мгновенные значения ψсдвига(t) фазы сигнала частоты сдвига определяются выражением:

ψсдвига(t)=ωсдвигаt-ψ0сдвига,

где ψ0сдвига - начальная фаза сигнала частоты сдвига.

Первый основной сигнал и сигнал частоты сдвига подают на частотный преобразователь и преобразуют в первый дополнительный сигнал, частота ω1доп которого сдвинута относительно частоты первого основного сигнала на частоту сигнала сдвига. Сдвиг может происходить либо с увеличением частоты либо с ее уменьшением. В частности, частота первого дополнительного сигнала может быть, как показано на фиг.3, равна сумме частот:

ω1доп1сдвига.

Второй основной сигнал аналогично преобразуют во второй дополнительный сигнал, частота ω2доп которого в рассматриваемом примере определяется выражением:

ω2доп2сдвига.

Мгновенное значение ψ1доп(t) фазы первого дополнительного сигнала с точностью до постоянного сдвига фазы равно сумме фаз первого основного сигнала и сигнала частоты сдвига:

ψ1доп(t)=(ω1сдвига)t-(ψ010сдвига1преобр),

где ψ1преобр - дополнительный сдвиг фазы при преобразовании первого основного сигнала в первый дополнительный.

Мгновенное значение ψ2доп(t) фазы второго дополнительного сигнала с точностью до постоянного сдвига фазы равно сумме фаз второго основного сигнала и сигнала частоты сдвига:

ψ2доп(t)=(ω2сдвига)t-(ψ020сдвига2преобр),

где ψ2преобр - дополнительный сдвиг фазы при преобразовании второго основного сигнала во второй дополнительный.

Вблизи заданной точки M (см. фиг.1) располагают первый радиомаяк, излучающий первый основной и второй дополнительный сигналы, и второй радиомаяк, излучающий второй основной и первый дополнительный сигналы.

На объекте управления основные сигналы принимают и преобразуют в основной сигнал разностной частоты (ω12). Прием и преобразование могут производиться различными способами. В частности, как показано на фиг.4, прием обоих основных сигналов может производиться единым приемником основных сигналов, а преобразование принятых основных сигналов в основной сигнал разностной частоты может происходить в амплитудном детекторе.

Мгновенные значения ψ1прин(r, t) и ψ2прин(r, t) фаз принятых основных сигналов радиомаяков зависят от частот ω1 и ω2 и от расстояний r1 и r2 от соответствующих передающих антенн до объекта управления:

ψ 1 п р и н ( r , t ) = ω 1 t ω 1 c r 1 ψ 01 ;

ψ 2 п р и н ( r , t ) = ω 2 t ω 2 c r 2 ψ 02 ,

где r - вектор текущих координат объекта управления;

c - скорость света.

Мгновенное значение ψосн.разн(r, t) фазы основного сигнала разностной частоты с точностью до постоянного сдвига фазы равно разности фаз принятых основных сигналов:

ψ о с н . р а з н ( r , t ) = ( ω 1 ω 2 ) t 1 c ( ω 1 r 1 ω 2 r 2 ) ( ψ 01 ψ 02 ) ψ п р е о б р . о с н ,

где ψпреобр. осн - дополнительный сдвиг фазы при преобразовании в основной сигнал разностной частоты.

Дополнительные сигналы принимают и преобразуют в дополнительный сигнал разностной частоты.

Мгновенные значения фазы принятого первого дополнительного сигнала отличаются от мгновенных значений ψ1доп(t) фазы излученного вторым радиомаяком первого дополнительного сигнала на величину ( ω 1 + ω с д в и г а ) c r 2 , соответствующую расстоянию r2 от антенны второго радиомаяка до объекта управления:

ψ 1 д о п . п р и н ( t ) = ( ω 1 + ω с д в и г а ) t ( ω 1 + ω с д в и г а ) c r 2 ( ψ 01 + ψ 0 с д в и г а + ψ 1 п р е о б р ) .

Мгновенные значения ψ2доп. прин(r, t) фазы принятого второго дополнительного сигнала отличаются от мгновенных значений ψ2доп(t) фазы излученного первым радиомаяком второго дополнительного сигнала на величину ( ω 2 + ω с д в и г а ) c r 1 , соответствующую расстоянию r1 от антенны первого радиомаяка до объекта управления:

ψ 2 д о п . п р и н ( t ) = ( ω 2 + ω с д в и г а ) t ( ω 2 + ω с д в и г а ) c r 1 ( ψ 02 + ψ 0 с д в и г а + ψ 2 п р е о б р ) .

Мгновенное значение ψдоп. разн(r, t) фазы дополнительного сигнала разностной частоты с точностью до постоянного сдвига фазы равно разности ψ1доп. прин(r, t) и ψ2доп. прин(r, t) фаз принятых дополнительных сигналов:

ψ д о п . р а з н ( r , t ) = ψ 1 д о п . п р и н ( r , t ) ψ 2 д о п . п р и н ( r , t ) = = ( ω 1 ω 2 ) t 1 c ( ω 1 д о п r 2 ω 2 д о п r 1 ) ψ 0 д о п ,

где ψ0доп=(ψ0102)+(ψ1преобр2преобр)-ψпреобр. доп;

ψпреобр. доп - дополнительный сдвиг фазы при преобразовании в дополнительный сигнал разностной частоты.

Разность Δψ(r(t)) фаз основного и дополнительного сигналов разностной частоты в точке расположения объекта управления определяется следующим выражением:

Δ ψ ( r ( t ) ) = ψ о с н . р а з н ( r , t ) ψ д о п . р а з н ( r , t ) = 1 c [ ω 1 r 1 ω 2 r 2 ( ω 1 д о п r 2 ω 2 д о п r 1 ) ] ψ 00 = = 1 c [ ( ω 1 + ω 2 д о п ) r 1 ( ω 2 + ω 1 д о п ) r 2 ] ψ 00 ,

где ψ00=(ψпреобр. оснпреобр. доп)+(ψ1преобр2преобр).

Разность фаз основного и дополнительного сигналов разностной частоты в точке расположения объекта управления не зависит от начальных фаз основных сигналов и, следовательно, от соответствующих фазовых нестабильностей. Это существенно (на порядки) уменьшает требования к когерентности основных сигналов.

Покажем, что линии равных разностей фаз основного и дополнительного сигналов разностной частоты расположены веерообразно и направлены в сторону отрезка, соединяющего точки расположения антенн радиомаяков.

Определим градиент функции Δψ(r(t)), при этом учтем, что

g r a d ( r 1 ) = r 1 0 ;

g r a d ( r 2 ) = r 2 0 ;

Тогда

g r a d ( Δ ψ ( r ( t ) ) ) = 1 c D ,

где D = ( ω 1 + ω 2 д о п ) r 1 0 ( ω 2 + ω 1 д о п ) r 2 0 = = ( ω 1 + ω 2 + ω с д в и г а ) r 1 0 ( ω 2 + ω 1 + ω с д в и г а ) r 2. 0

Таким образом, вектор D равен разности двух векторов, имеющих одинаковую длину (ω12сдвига).

Вектор градиента разности фаз перпендикулярен касательной к линии (поверхности) равных значений разности фаз. Таким образом, положение касательной к линии равных значений разности фаз в точке расположения объекта управления определяется вектором D.

Из диаграммы на фиг.1 видно, что вектор D перпендикулярен биссектрисе угла β. Поэтому касательная к линии равных фаз пересекает отрезок, соединяющий точки расположения антенн радиомаяков. Это справедливо для всех положений объекта управления и при любых положениях антенн радиомаяков.

На фиг.2 приведены линии равных разностей фаз для конкретного расположения антенн и траектория движения объекта управления. Линии равных разностей фаз пересекают отрезок, соединяющий точки расположения антенн радиомаяков. Таким образом, задача вывода объекта на заданную точку может быть сведена к задаче движения по траектории, совпадающей с одной из линий равных разностей фаз основного и дополнительного сигналов разностной частоты.

В качестве значения разностей фаз на выбранной линии равных фаз может быть использовано значение разности фаз в момент начала управления. Это значение соответствует линии L0 равных разностей фаз, проходящей через начальную точку M0.

В соответствии с этим в момент начала управления движением объекта определяют начальное значение Δψнач разности фаз основного и дополнительного сигналов разностной частоты, а в последующие моменты определяют текущие значения Δψ(r(t)) разности фаз основного и дополнительного сигналов разностной частоты.

Если после начала управления объект движется по линии L0, то отклонение текущих значений Δψ(r(t)) от начального значения Δψнач равно нулю, что должно соответствовать нулевому сигналу ошибки.

Если, как показано на фиг.2, вектор V0 скорости объекта управления в момент начала управления (или в любой другой момент) направлен не вдоль линии L0, объект отклоняется от линии L0, текущие значения разности фаз отклоняются от начального значения, что приводит к формированию сигнала ошибки, знак и величина которого определяются знаком и величиной отклонения от линии L0. В соответствии с сигналом ошибки формируется сигнал управления, в результате чего объект управления возвращается на линию L0 и движется по ней в направлении «ворот» между антеннами радиомаяков.

Определение разности фаз Δψ(r(t)) и ее отклонений от начального значения Δψнач может производиться различными способами. В частности, как показано на фиг.4, разность фаз Δψ(r(t)) может определяться в цифровом определителе разности фаз, значение разности фаз в момент начала управления Δψнач может быть записано в запоминающем устройстве по команде записи, а отклонение разности фаз может быть определено путем суммирования текущего значения разности фаз Δψ(r(t)) и взятого с обратным знаком начального значения Δψнач.

Чтобы обеспечить взаимно однозначное соответствие отклонения разности фаз и отклонения положения объекта управления от линии L0, в цифровом определителе разности фаз должен использоваться алгоритм, при котором не происходит «сброс» целого числа периодов используемой в алгоритме обратной тригонометрической функции.

В частности, алгоритм может использовать периодическое вычисление тангенса разности фаз, с последующим вычислением арктангенса. Результатом является главное значение арктангенса, которое может отличаться от истинного значения разности фаз Δψ(r(t)) на величину, кратную π:

Δψ(r(t))=Δψглавн+nπ,

где Δψглавн - главное значение арктангенса;

n - целое число.

При определении начального значения разности фаз величине n присваивается любое конечное значение. Например, нулевое.

В каждый из последующих моментов полученное очередное главное значение арктангенса сравнивается со значением в предыдущий момент. Если приращение главного значения арктангенса по абсолютной величине больше некоторого допустимого значения, то это является признаком очередного «сброса» величины π. В этом случае для компенсации «сброса» необходимо величину n изменить. Если новое главное значение меньше нуля, то величину n следует увеличить на единицу. Если новое главное значение больше нуля, то величину n следует на единицу уменьшить.

Погрешность вывода объекта на точку определяется расстоянием между радиомаяками.

Похожие патенты RU2543064C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ ОШИБКИ ПРИ УПРАВЛЕНИИ ДВИЖЕНИЕМ ОБЪЕКТА С ЦЕЛЬЮ ВЫВОДА ЕГО НА ЗАДАННУЮ ТОЧКУ 2013
  • Верба Владимир Степанович
  • Силкин Александр Тихонович
  • Степаненко Сергей Николаевич
  • Рахманов Илья Михайлович
RU2556890C2
ЛОКАЛЬНАЯ ФАЗОВАЯ РАЗНОСТНО-ДАЛЬНОМЕРНАЯ РАДИОНАВИГАЦИОННАЯ СИСТЕМА 2015
  • Дорух Игорь Георгиевич
  • Шеболков Виктор Васильевич
RU2604652C2
СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ ОБЪЕКТА 1992
  • Воронец Игорь Васильевич
  • Полиенко Иван Николаевич
RU2036826C1
РАДИОНАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ПЕЛЕНГА ПОДВИЖНОГО ОБЪЕКТА 2012
  • Гулько Владимир Леонидович
RU2507529C1
РАДИОНАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ПЕЛЕНГА ПОДВИЖНОГО ОБЪЕКТА 2012
  • Гулько Владимир Леонидович
RU2507530C1
Способ определения положения летательного аппарата относительно взлётно-посадочной полосы при посадке и система для его осуществления 2016
  • Сафонов Владимир Ильич
  • Сазонов Николай Иванович
  • Калинин Юрий Иванович
  • Фролкина Людмила Вениаминовна
  • Копылов Игорь Анатольевич
RU2620359C9
ЗАПРОСНЫЙ СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ И МЕСТОПОЛОЖЕНИЯ СПУТНИКА ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ ГЛОНАСС И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
RU2518174C2
СПОСОБ РАДИОЛОКАЦИИ ОБЪЕКТОВ С ИНЕРЦИОННОЙ НЕЛИНЕЙНОСТЬЮ 2013
  • Симонов Владимир Иванович
RU2510765C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ НЕСАНКЦИОНИРОВАННОГО ИСПОЛЬЗОВАНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2012
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
RU2509373C2
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТА НАВИГАЦИИ 2015
  • Шеболков Виктор Васильевич
  • Дорух Игорь Георгиевич
RU2584545C1

Иллюстрации к изобретению RU 2 543 064 C1

Реферат патента 2015 года СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ ОШИБКИ ПРИ УПРАВЛЕНИИ ДВИЖЕНИЕМ ОБЪЕКТА С ЦЕЛЬЮ ВЫВОДА ЕГО НА ЗАДАННУЮ ТОЧКУ

Изобретение относится к радионавигационным системам и может быть использовано в системах обеспечения посадки летательных аппаратов, в том числе беспилотных, а также в системах обеспечения судовождения. Достигаемый технический результат - улучшение массогабаритных характеристик системы. Указанный результат достигается снижением габаритов используемых антенн, что обеспечивает значительное уменьшение массы и габаритов систем обеспечения посадки, по сравнению с известными курсоглиссадными системами. 4 ил.

Формула изобретения RU 2 543 064 C1

Способ формирования сигналов ошибки при управлении движением объекта с целью вывода его на заданную точку, заключающийся в том, что объект управления облучают радиосигналами, а на объекте управления радиосигналы принимают и преобразуют в сигналы ошибки, отличающийся тем, что формируют первый и второй основные сигналы неравных частот и сигнал частоты сдвига, первый основной сигнал и сигнал частоты сдвига преобразуют в первом частотном преобразователе в первый дополнительный сигнал, частота которого сдвинута относительно частоты первого основного сигнала на частоту сдвига, второй основной сигнал и сигнал частоты сдвига преобразуют во втором частотном преобразователе во второй дополнительный сигнал, частота которого сдвинута относительно частоты второго основного сигнала на частоту сдвига, соответствующие сформированные сигналы направляют в первый и второй радиомаяки, расположенные вблизи заданной точки, при этом первый радиомаяк излучает первый основной и второй дополнительный сигналы, второй радиомаяк излучает второй основной и первый дополнительный сигналы, на объекте управления принимаемые основные сигналы преобразуют в основной сигнал разностной частоты, принимаемые дополнительные сигналы преобразуют в дополнительный сигнал разностной частоты, в момент начала управления движением объекта определяют начальное значение разности фаз основного и дополнительного сигналов разностной частоты, в последующие моменты определяют текущие значения разности фаз основного и дополнительного сигналов разностной частоты и формируют сигналы ошибки в зависимости от отклонений текущих значений разности фаз основного и дополнительного сигналов разностной частоты от начального значения разности фаз основного и дополнительного сигналов разностной частоты.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543064C1

Бакулев П.А
и др
Радионавигационные системы
Москва, Радиотехника, 2011, с.161-170
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕДОТВРАЩЕНИЯ СТОЛКНОВЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С ЗЕМЛЕЙ 1993
  • Ксавье Шазелль
  • Анн-Мари Юно
  • Жерар Лепер
RU2124760C1
СПОСОБ АВТОНОМНОГО ФОРМИРОВАНИЯ ПОСАДОЧНОЙ ИНФОРМАЦИИ ДЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА И БОРТОВОЙ РАДИОЛОКАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2006
  • Артемов Владимир Тарасович
RU2303796C1
СПОСОБ ВНЕШНЕГО РАДИОЛОКАЦИОННОГО ВЫЯВЛЕНИЯ ФАКТА НАЛИЧИЯ ТРАЕКТОРНЫХ НЕСТАБИЛЬНОСТЕЙ ПОЛЕТА ВОЗДУШНОГО ОБЪЕКТА С МАЛЫМ КУРСОВЫМ УГЛОМ ПЕРЕМЕЩЕНИЯ 2009
  • Митрофанов Дмитрий Геннадьевич
  • Прохоркин Александр Геннадьевич
  • Бортовик Виталий Валерьевич
  • Перехожев Валентин Александрович
  • Митрофанов Алексей Дмитриевич
  • Волошко Павел Владимирович
RU2410717C2
JP 2000019249 A, 21.01.2000
WO 2006094067 A1, 08.09.2006
US 5181027 A, 19.01.1993

RU 2 543 064 C1

Авторы

Верба Владимир Степанович

Силкин Александр Тихонович

Степаненко Сергей Николаевич

Рахманов Илья Михайлович

Даты

2015-02-27Публикация

2013-10-17Подача