СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ ОШИБКИ ПРИ УПРАВЛЕНИИ ДВИЖЕНИЕМ ОБЪЕКТА С ЦЕЛЬЮ ВЫВОДА ЕГО НА ЗАДАННУЮ ТОЧКУ Российский патент 2015 года по МПК G01S1/16 

Описание патента на изобретение RU2556890C2

Изобретение относится к радионавигационным системам и может быть использовано в системах обеспечения посадки летательных аппаратов, в том числе беспилотных, а также в системах обеспечения судовождения. Кроме того, изобретение может быть использовано для обеспечения автоматического возвращения пожарного или иного робота, для обеспечения прицельного десантирования людей или грузов, для обеспечения прицельного сброса воды при тушении пожаров.

Известны способы формирования сигнала ошибки, применяемые в радиотехнических системах посадки самолетов для обеспечения движения самолета по заданной траектории снижения и приземления {Бакулев П.А., Сосновский А.А. Радионавигационные системы. М.: Радиотехника, 2011, - с.159-181}.

Для реализации известных способов летательный аппарат (ЛА) облучают радиосигналами, на борту ЛА сигналы принимают и преобразуют в сигналы угловых отклонений от заданной траектории. Параметры сигналов, содержащие информацию об угловых отклонениях ЛА, формируют с помощью специальных антенн радиомаяков. Обычно радиотехническая система посадки состоит из двух независимых каналов (курсового и глиссадного).

Наиболее близким аналогом заявляемого способа является равносигнальный способ определения отклонений от заданной траектории движения {Бакулев П.А., Сосновский А.А. Радионавигационные системы. М.: Радиотехника, 2011, - с.161-170}. Этот способ применяется в каждом из двух (курсовом и глиссадном) каналов.

В частности, для управления движением ЛА по курсу используют расположенный на оси взлетно-посадочной полосы курсовой равносигнальный радиомаяк.

Формируют два амплитудно-модулированных сигнала с одинаковой несущей частотой, отличающиеся частотами модуляции F1 и F2. Для этих двух сигналов формируют две неподвижные пересекающиеся диаграммы направленности антенной системы радиомаяка. Равносигнальное направление радиомаяка, соответствующее точке пересечения диаграмм направленности, направляют по линии курса, то есть по оси взлетно-посадочной полосы. ЛА облучают с помощью антенной системы двумя амплитудно-модулированными сигналами. На борту ЛА сигналы радиомаяка принимают и детектируют. Сигнал отклонения от линии курса (сигнал ошибки) формируют в зависимости от разности амплитуд полученных в результате детектирования сигналов частот F1 и F2.

Недостатком известного равносигнального способа является необходимость использования высоконаправленных антенных систем. Это приводит к значительным габаритам антенных систем, значительной их массе, к необходимости применения громоздких несущих конструкций и фундаментов для них, а также к невозможности быстрого развертывания антенной системы.

Изобретение направлено на решение задачи формирования сигналов ошибки при обеспечении вывода объекта на заданную точку без применения высоконаправленных антенн, что обеспечивает улучшение массогабаритных характеристик системы и существенное сокращение сроков ее развертывания.

Формирование сигнала ошибки при управлении движением объекта с целью вывода объекта на заданную точку происходит следующим образом.

Формируют два основных сигнала неравных частот.

Дополнительно формируют сигнал модуляции путем преобразования основных сигналов в сигнал разностной частоты.

Сигналом модуляции модулируют сигнал дополнительного начальное значение разности фаз сигнала разностной частоты и опорного сигнала.

В последующие моменты определяют текущие значения разности фаз сигнала разностной частоты и опорного сигнала и формируют сигналы ошибки в зависимости от отклонений текущих значений разности фаз сигнала разностной частоты и опорного сигнала от начального значения разности фаз сигнала разностной частоты и опорного сигнала.

Пример реализации предлагаемого способа описан со ссылками на фиг.1, фиг.2, фиг.3 и фиг.4.

На фиг.1 представлена векторная диаграмма, позволяющая определить пространственное расположение линий равных разностей фаз сигнала разностной частоты и опорного сигнала. На фиг.1 используются следующие обозначения:

1 - передающая антенна первого радиомаяка, излучающая сигнал частоты ω1;

2 - передающая антенна второго радиомаяка, излучающая сигнал частоты ω2;

3 - антенна дополнительного радиопередающего устройства;

4 - точка, вблизи которой должна пройти траектория движения объекта управления (заданная точка);

5 - объект управления;

r1, r2 - векторы, начала которых находятся в точках расположения антенн первого и второго радиомаяков, а концы - в точке расположения объекта управления;

β - угол между векторами r1 и r2;

r3 - вектор, начало которого находится в точке расположения антенны дополнительного радиопередающего устройства, а конец - в точке расположения объекта управления;

r 1 0 , r 2 0 , r 3 0 - орты векторов r1, r2, r3.

На фиг.2 приведен вариант функциональной схемы формирования сигналов радиомаяков и сигнала дополнительного радиопередающего устройства. На фиг.2 используются следующие обозначения:

1 - передающая антенна первого радиомаяка, излучающая сигнал частоты ω1;

2 - передающая антенна второго радиомаяка, излучающая сигнал частоты ω2;

3 - антенна дополнительного радиопередающего устройства;

6 - синтезатор частот основных сигналов;

7 - сумматор;

8 - амплитудный детектор;

9 - дополнительное радиопередающее устройство;

10 - первый радиомаяк;

11 - второй радиомаяк.

На фиг.3 приведен вариант функциональной схемы бортовой части системы формирования сигнала ошибки. На фиг.3 используются следующие обозначения:

12 - приемник основных сигналов;

13 - антенна приемника основных сигналов;

14 - амплитудный детектор;

15 - приемник сигнала дополнительного радиопередающего устройства;

16 - антенна приемника сигнала дополнительного радиопередающего устройства;

17 - демодулятор;

18 - цифровой определитель разности фаз;

19 - запоминающее устройство;

20 - сумматор;

21 - формирователь сигнала ошибки.

На фиг.4 показаны траектория движения объекта управления и линии равных разностей фаз сигнала разностной частоты и опорного сигнала. На фиг.4 используются следующие обозначения:

4 - точка, вблизи которой должна пройти траектория движения объекта управления (заданная точка);

22 - траектория движения объекта управления;

23 - точка расположения антенны первого радиомаяка;

24 - точка расположения антенны второго радиомаяка;

25 - линия равных фаз, проходящая через начальную точку (точку расположения объекта управления в момент начала управления);

26 - начальная точка;

27 - точка расположения антенны дополнительного радиопередающего устройства;

V0 - вектор скорости объекта управления в момент начала управления.

Формирование сигнала ошибки происходит следующим образом.

Первый радиомаяк, антенна 1 которого (фиг.1) излучает основной сигнал частоты ω1, второй радиомаяк, антенна 2 которого излучает основной сигнал частоты ω2, и дополнительное радиопередающее устройство, антенна 3 которого излучает модулированный сигнал, располагают вблизи заданной точки 4.

Формирование основных сигналов может производиться в синтезаторе частот 6, как показано на фиг.2.

Мгновенные значения ψ1(t) и ψ2(t) фаз основных сигналов определяются выражениями:

ψ1(t)=ω1t-ψ01;

ψ1(t)=ω2t-ψ02,

где t - текущее время;

ψ01 - начальная фаза сигнала первого радиомаяка;

ψ02 - начальная фаза сигнала второго радиомаяка.

Формируют сигнал модуляции путем преобразования двух основных сигналов в сигнал разностной частоты.

Преобразование основных сигналов в сигнал модуляции может быть произведено различными способами. В частности, возможно, как показано на фиг.2, сложение основных сигналов в сумматоре 7 с последующим детектированием в амплитудном детекторе 8.

Мгновенное значение ψмод(t) сигнала модуляции с точностью до постоянного сдвига фазы равно разности фаз основных сигналов:

ψмод(t)=(ω12)t-(ψ0102)-ψ0,

где ψ0 - дополнительный сдвиг фазы при преобразовании.

Сигналом модуляции модулируют сигнал дополнительного радиопередающего устройства. Вид модуляции сигнала дополнительного радиопередающего устройства может быть любым.

На объекте управления основные сигналы принимают и преобразуют в сигнал разностной частоты (ω12). Прием и преобразование могут производиться различными способами. В частности, как показано на фиг.3, прием обоих основных сигналов может производиться одним приемником основных сигналов 12 с антенной 13. Преобразование принятых сигналов в сигнал разностной частоты может происходить в амплитудном детекторе 14.

Мгновенные значения ψ1(r,t) и ψ2(r,t) фаз принятых основных сигналов радиомаяков зависят от частот ω1 и ω2 и от расстояний r1 и r2 от соответствующих передающих антенн до объекта управления.

где r - вектор текущих координат объекта управления;

с - скорость света.

Мгновенное значение фазы сигнала разностной частоты с точностью до постоянного сдвига фазы равно разности фаз принятых сигналов радиомаяков:

где ψпреобр - дополнительный сдвиг фазы при преобразовании.

На объекте управления сигнал дополнительного радиопередающего устройства принимают приемником 15 с антенной 16 (фиг.3) и преобразуют в демодуляторе 17 в опорный сигнал разностной частоты.

Мгновенное значение ψon(r,t) фазы опорного сигнала отличается от мгновенного значения ψмод(t) фазы сигнала модуляции на величину, соответствующую расстоянию r3, от антенны дополнительного радиопередающего устройства до объекта управления:

где ψмод - дополнительный сдвиг фазы при модуляции сигнала дополнительного радиопередающего устройства;

ψдемод - дополнительный сдвиг фазы при демодуляции.

Разность Δψ(r(t)) фаз сигнала разностной частоты и опорного сигнала в точке расположения объекта управления зависит от всех трех расстояний r1, r2 и r3:

где ψ00преобрмоддемод.

Заметим, что разность фаз сигнала разностной частоты и опорного сигнала в точке расположения объекта управления не зависит от начальных фаз основных сигналов и, следовательно, от соответствующих фазовых нестабильностей. Это существенно (на порядки) уменьшает требования к когерентности основных сигналов.

Покажем, что линии равных разностей фаз сигнала разностной частоты и опорного сигнала расположены веерообразно и направлены в сторону отрезка, соединяющего точки расположения антенны 1 и антенны 2 радиомаяков.

Определим градиент функции Δψ(r(t)).

Учтем, что:

Тогда

где D = ω 1 r 1 0 [ ω 2 r 2 0 + ( ω 1 ω 2 ) r 3 0 ] .

Вектор градиента разности фаз перпендикулярен касательной к линии (поверхности) равных значений разности фаз. Таким образом, положение касательной к линии равных значений разности фаз в точке расположения объекта управления определяется вектором D.

Из векторной диаграммы на фиг.1 видно, что вектор D приблизительно перпендикулярен биссектрисе угла β. Поэтому касательная к линии равных разностей фаз направлена в сторону отрезка, соединяющего точки расположения антенн 1 и 2 радиомаяков. Это справедливо для любых положений объекта управления и при любых положениях антенн радиомаяков.

Как видно из векторной диаграммы на фиг.1, изменение положения антенны 3 дополнительного радиопередающего устройства практически не влияет на направление вектора D и, следовательно, на положение линий равных разностей фаз. Это позволяет располагать антенну 3 дополнительного радиопередающего устройства практически в любом месте.

На фиг.4 приведены траектория движения 22 объекта управления и линии L1, L2, L3, …, LN равных разностей фаз для конкретного расположения антенн. Линии равных разностей фаз пересекают отрезок, соединяющий точки 23 и 24 расположения антенн радиомаяков. Таким образом, задача вывода объекта на отрезок, соединяющий точки 23 и 24, может быть сведена к задаче движения по траектории, совпадающей с одной из линий равных разностей фаз сигнала разностной частоты и опорного сигнала.

В качестве значения разности фаз на выбранной линии равных разностей фаз может быть использовано значение разности фаз в момент начала управления. Это значение соответствует линии 25 равных разностей фаз, проходящей через начальную точку 26 (точку расположения объекта управления в момент начала управления).

В соответствии с этим, в момент начала управления движением объекта определяют начальное значение Δψнач разности фаз сигнала разностной частоты и опорного сигнала, а в последующие моменты определяют текущие значения Δψ(r(t)) разности фаз сигнала разностной частоты и опорного сигнала.

Если после начала управления объект движется по линии 25, то отклонение текущих значений Δψ(r(t)) от начального значения Δψнач равно нулю, что должно соответствовать нулевому сигналу ошибки.

Если, как показано на фиг.4, вектор V0 скорости объекта управления в момент начала управления (или в любой другой момент) направлен не вдоль линии 25, то объект отклоняется от линии 25, текущие значения Δψ(r(t)) разности фаз отклоняются от начального значения Δψнач, что приводит к формированию сигнала ошибки, знак и величина которого определяются знаком и величиной отклонения от линии 25. В соответствии с сигналом ошибки формируется сигнал управления, в результате чего объект управления возвращается на линию 25 и движется по ней в направлении отрезка между точками 23 и 24 расположения антенн радиомаяков.

Определение разности фаз Δψ(r(t)) и ее отклонений от начального значения Δψнач может производиться различными способами. В частности, как показано на фиг.3, разность фаз Δψ(r(t)) может определяться в цифровом определителе разности фаз 18, значение разности фаз в момент начала управления Δψнач может быть записано в запоминающем устройстве 19 по команде записи, а отклонение разности фаз может быть определено путем суммирования в сумматоре 20 текущего значения разности фаз Δψ(r(t)) и взятого с обратным знаком начального значения Δψнач.

Преобразование отклонения разности фаз от начального значения в сигнал ошибки происходит в формирователе сигнала ошибки 21.

Чтобы обеспечить взаимно однозначное соответствие отклонения разности фаз и отклонения объекта управления от линии 25, в цифровом определителе разности фаз должен использоваться алгоритм, при котором не происходит «сброс» целого числа периодов используемой в алгоритме обратной тригонометрической функции.

В частности, алгоритм может использовать периодическое вычисление тангенса разности фаз с последующим вычислением арктангенса. Результатом является главное значение арктангенса, которое может отличаться от истинного значения разности фаз Δψ(r(t)) на величину, кратную π:

где Δψглавн - главное значение арктангенса;

n - целое число.

При определении начального значения разности фаз величине n присваивается любое конечное целое значение. Например, нулевое. В каждый из последующих моментов полученное очередное главное значение арктангенса сравнивается со значением в предыдущий момент. Если приращение главного значения арктангенса по абсолютной величине больше некоторого допустимого значения, то это является признаком очередного «сброса» величины π. В этом случае для компенсации «сброса» необходимо величину n изменить. Если новое главное значение меньше нуля, то величину n следует увеличить на единицу. Если новое главное значение больше нуля, то величину n следует на единицу уменьшить.

Погрешность вывода объекта на заданную точку определяется расстоянием между антеннами радиомаяков и расположением антенн радиомаяков относительно заданной точки. Целесообразно располагать антенны радиомаяков по разные стороны от заданной точки.

В случае, когда требуется вывести объект управления на заданную точку с заданного направления (например, при выводе летательного аппарата на начало взлетно-посадочной полосы), следует располагать антенны радиомаяков симметрично относительно заданной траектории. Погрешность углового положения траектории относительно заданной траектории определяется угловым положением точки 26 начала управления.

Похожие патенты RU2556890C2

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ ОШИБКИ ПРИ УПРАВЛЕНИИ ДВИЖЕНИЕМ ОБЪЕКТА С ЦЕЛЬЮ ВЫВОДА ЕГО НА ЗАДАННУЮ ТОЧКУ 2013
  • Верба Владимир Степанович
  • Силкин Александр Тихонович
  • Степаненко Сергей Николаевич
  • Рахманов Илья Михайлович
RU2543064C1
Способ определения положения летательного аппарата относительно взлётно-посадочной полосы при посадке и система для его осуществления 2016
  • Сафонов Владимир Ильич
  • Сазонов Николай Иванович
  • Калинин Юрий Иванович
  • Фролкина Людмила Вениаминовна
  • Копылов Игорь Анатольевич
RU2620359C9
РАДИОНАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ПЕЛЕНГА ПОДВИЖНОГО ОБЪЕКТА 2012
  • Гулько Владимир Леонидович
RU2507530C1
Способ обзорной пассивной однопозиционной моноимпульсной трёхкоординатной угломерно-разностно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов 2017
  • Джиоев Альберт Леонидович
  • Омельчук Иван Степанович
  • Тюрин Дмитрий Александрович
  • Фоминченко Геннадий Леонтьевич
  • Фоминченко Геннадий Геннадьевич
  • Яковленко Владимир Викторович
RU2661357C1
Способ определения местоположения и вектора скорости полета летательного аппарата 2021
  • Брызгалов Александр Петрович
  • Комарова Наталья Владимировна
  • Мирошниченко Антон Валерьевич
  • Татарчук Иван Александрович
RU2776077C1
АНТЕННА И РЕШЕТКА ГЛИССАДЫ ДЛЯ СИСТЕМЫ ПОСАДКИ И ТОЧНОГО ЗАХОДА НА ПОСАДКУ НЕБОЛЬШИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2020
  • Ферла, Массимилиано
  • Карзена, Давид
  • Кукурачи, Андреа
  • Делофр, Натан
  • Лунарди, Паоло
  • Шюттпельц, Андре
  • Роусон, Стивен
  • Торриано, Франческо
  • Теобальд, Михаэль
  • Макгэхи, Кевин
RU2796476C1
Способ пассивной однопозиционной угломерно-разностно-доплеровской локации перемещающегося в пространстве радиоизлучающего объекта и радиолокационная система для реализации этого способа 2016
  • Джиоев Альберт Леонидович
  • Омельчук Иван Степанович
  • Тюрин Дмитрий Александрович
  • Фоминченко Геннадий Леонтьевич
  • Фоминченко Геннадий Геннадьевич
  • Яковленко Владимир Викторович
RU2617830C1
РАДИОНАВИГАЦИОННАЯ СИСТЕМА ДЛЯ ИЗМЕРЕНИЯ ПЕЛЕНГА ПОДВИЖНОГО ОБЪЕКТА 2012
  • Гулько Владимир Леонидович
RU2507529C1
СПОСОБ РЕГУЛИРОВКИ ИНФОРМАЦИОННОГО ПАРАМЕТРА КУРСО-ГЛИССАДНЫХ РАДИОМАЯКОВ И УСТРОЙСТВА ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2017
  • Войтович Николай Иванович
  • Жданов Борис Викторович
RU2695316C2
ИНТЕГРИРОВАННАЯ СИСТЕМА ОРИЕНТАЦИИ И НАВИГАЦИИ ДЛЯ ОБЪЕКТОВ С БЫСТРЫМ ВРАЩЕНИЕМ ВОКРУГ ПРОДОЛЬНОЙ ОСИ 2014
  • Блажнов Борис Александрович
  • Волынский Денис Валерьевич
  • Емельянцев Геннадий Иванович
  • Радченко Дмитрий Александрович
  • Семенов Илья Вячеславович
  • Степанов Алексей Петрович
RU2561003C1

Иллюстрации к изобретению RU 2 556 890 C2

Реферат патента 2015 года СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ ОШИБКИ ПРИ УПРАВЛЕНИИ ДВИЖЕНИЕМ ОБЪЕКТА С ЦЕЛЬЮ ВЫВОДА ЕГО НА ЗАДАННУЮ ТОЧКУ

Изобретение относится к радионавигационным системам и может быть использовано в системах обеспечения посадки летательных аппаратов, в том числе беспилотных, а также в системах обеспечения судовождения. Достигаемый технический результат - улучшение массогабаритных характеристик системы, реализующей способ, и сокращение сроков ее развертывания. Указанный результат достигается за счет того, что формируют сигнал ошибки при обеспечении вывода объекта на заданную точку без применения высоконаправленных антенн. 4 ил.

Формула изобретения RU 2 556 890 C2

Способ формирования сигналов ошибки при управлении движением объекта с целью вывода его на заданную точку, заключающийся в том, что объект управления облучают радиосигналами, а на объекте управления радиосигналы принимают и преобразуют в сигналы ошибки, отличающийся тем, что вблизи заданной точки располагают два радиомаяка, в которых формируют два основных сигнала неравных частот и излучают их, формируют также сигнал модуляции путем преобразования основных сигналов неравных частот двух радиомаяков в сигнал разностной частоты, которым модулируют сигнал дополнительного радиопередающего устройства, расположенного вблизи заданной точки, на объекте управления принимают основные сигналы неравных частот, преобразуют в сигнал разностной частоты, на объекте управления принимают также сигнал дополнительного радиопередающего устройства, который путем демодуляции преобразуют в опорный сигнал, в момент начала управления движением объекта определяют начальное значение разности фаз сигнала разностной частоты и опорного сигнала, в последующие моменты определяют текущие значения разности фаз сигнала разностной частоты и опорного сигнала и формируют сигналы ошибки в зависимости от отклонений текущих значений разности фаз сигнала разностной частоты и опорного сигнала от начального значения разности фаз сигнала разностной частоты и опорного сигнала.

Документы, цитированные в отчете о поиске Патент 2015 года RU2556890C2

БАКУЛЕВ П.А
и др
Радионавигационные системы
Москва, Радиотехника, 2011, с.161-170
СПОСОБ АВТОНОМНОГО ФОРМИРОВАНИЯ ПОСАДОЧНОЙ ИНФОРМАЦИИ ДЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА И БОРТОВОЙ РАДИОЛОКАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2006
  • Артемов Владимир Тарасович
RU2303796C1
СПОСОБ УПРАВЛЕНИЯ ОБЪЕКТОМ (ВАРИАНТЫ) И СИСТЕМА (ВАРИАНТЫ) ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Шипунов А.Г.
  • Образумов В.И.
  • Петрушин В.В.
  • Ткаченко Ю.Н.
  • Понятский В.М.
RU2209443C2
Устройство для контроля освещенности кадров стереопары 1956
  • Ханукаев Д.Р.
  • Щекочихин В.С.
SU108834A1
КОРРЕКТИРУЕМЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 1992
  • Буадзе В.Ш.
  • Бабушкин Д.П.
  • Власов В.В.
  • Коновалов Е.А.
  • Короткий В.И.
  • Матыцин В.Д.
  • Мельников В.Ф.
  • Мерцалов Б.Е.
  • Русаков А.П.
  • Сологуб В.М.
  • Ткачев В.В.
  • Трубенко Б.И.
  • Хотяков В.Д.
  • Храпов А.В.
  • Бундин Ю.В.
  • Соловей Э.Я.
  • Финогенов В.С.
RU2014559C1
JP 2006200932 A, 03.08.2006
US 5670961 A1, 23.09.1997
US 7894948 B2, 22.02.2011
WO 1993001576 A1, 21.01.1993

RU 2 556 890 C2

Авторы

Верба Владимир Степанович

Силкин Александр Тихонович

Степаненко Сергей Николаевич

Рахманов Илья Михайлович

Даты

2015-07-20Публикация

2013-10-17Подача