МАСТИЧНАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ Российский патент 2015 года по МПК C08L95/00 C09D195/00 C10C3/02 

Описание патента на изобретение RU2543217C1

Изобретение относится к составу и способу получения противокоррозионной и гидроизоляционной мастичной композиции, применяемой для защиты металлических поверхностей, в частности газо-, нефте- и продуктопроводов, резервуаров, бетонных и кирпичных поверхностей, а также в качестве компонента для производства антикоррозионных мастик, лаков, эмалей.

Известен способ получения противокоррозионных мастик на основе асфальтосмолистых олигомеров (RU 2407773, опубл. 27.12.2010). Противокоррозионную мастику получают, проводя процесс в едином технологическом цикле. Процесс включает загрузку битума при температуре 130°C. Затем прикапывают техническую серную кислоту 1,5-2 ч при температуре 130°C. Далее проводят стабилизацию продукта при 150°C 4 ч. Затем вводят добавки - масло техническое, бутилкаучук, термоэластопласт - при температуре 140°C. При этом компоненты постоянно перемешивают после каждой операции цикла от 60 до 180 мин.

Известная мастичная композиция характеризуется ограниченной областью применения и низкой теплостойкостью.

Известен способ получения противокоррозионного материала (RU 2074224, опубл. 27.02.1997), в котором асфальт деасфальтизации гудрона смешивают с кубовым остатком производства изопрена стадии регенерации диметилформальдегида и с серной кислотой. Процесс проводят постадийно. На первой стадии при 120-125°C в течение 210 мин, на второй стадии при 150°C в течение 240 мин, на третьей стадии при 160-180°C в течение 240 мин. Серную кислоту подают на первой стадии равномерно со скоростью подачи 20-35 кг/ч на тонну реакционной массы. Процесс проводят при соотношении компонентов, в мас.%: асфальт 75-85, кубовый остаток 10-15, кислота - остальное.

Мастика, получаемая известным способом, обладает невысокими физико-химическими характеристиками.

Наиболее близким по технической сущности к заявляемому объекту изобретения являются способ получения асмола и его композиция (RU 2443751, опубл. 27.02.2012). Асмол получают путем взаимодействия битума или асфальта с абсорбентом, получаемым в производстве бутадиена, изопрена, изобутилена на установках газоразделения (абсорбент марки A-1), в присутствии серной кислоты, при следующем соотношении компонентов: 75-85 мас.% битума или асфальта деасфальтизации пропаном; 8-22 мас.% абсорбента и серная кислота - остальное. На первой стадии битум или асфальт перемешивают с абсорбентом при температуре 100-115°C, после чего в реакционную смесь прикапывают серную кислоту в течение 5-6 часов до достижения температуры смеси 120-130°C. На второй стадии полученную смесь перемешивают в течение 2-2,5 часов, затем повышают температуру смеси до 135-140°C, после чего перемешивают ее в течение 4-5 часов. На третьей стадии температуру смеси повышают до 145-155°C и при достижении этой температуры смесь перемешивают в течение 4-6 часов с образованием целевого продукта.

Известным способом получают мастичную композицию, не обладающую стабильными свойствами в процессе ее эксплуатации.

Задачей настоящего изобретения является получение мастичной композиции с антикоррозионными и гидроизоляционными свойствами, при этом обладающей стабильными эксплуатационными свойствами, а также оптимизация состава и способа ее получения, что позволяет получить композицию с заданными эксплуатационными показателями, использование отходов производства для снижения загрязнения окружающей среды и обеспечение безопасности условий труда.

Поставленная задача достигается тем, что мастичная композиция содержит битум нефтяной или асфальт пропановой деасфальтизации гудрона (далее - АПД), переработанный абсорбент производств бутадиена и изопрена, кислоту серную при следующем соотношении компонентов, мас.%:

Битум нефтяной или асфальт пропановой деасфальтизации гудрона 86-90 Абсорбент 5-8 Кислота серная остальное

Битум нефтяной выбирают из группы, включающей битумы нефтяные дорожные вязкие БН 60/90/130, БНД 60/90, БНД 90/130, БНД 200/300, БНД 130/200, БНД 40/60, БН 200/300, БН 130/200, БН 90/130, БН 60/90 по ГОСТ 22245-90. Битумы нефтяные дорожные вязкие. Абсорбент представляет собой переработанный абсорбент производств бутадиена и изопрена по ТУ 2411-019-73776139-2009 или ТУ 38.103349-85 (абсорбент марки А-2), предпочтительнее использовать переработанный абсорбент в производстве мономера изопрена для синтетического каучука по ТУ 2411-019-73776139-2009 (свойства приведены в табл.2). Вместе с тем предпочтительно использовать кислоту серную с концентрацией 90-95%. Серная кислота в процессе получения мастичной композиции является сульфирующим агентом и катализатором.

Поставленная задача достигается также тем, что способ получения мастичной композиции включает следующие стадии: на первой стадии битум нефтяной или АНД перемешивают с указанным абсорбентом при температуре 100-110°C в течение 150-180 мин, после чего в реакционную массу осуществляют ввод кислоты серной прикапыванием через дозирующую шайбу со скоростью 40-50 кг/ч при температуре реакционной массы 110-125°C. На данной стадии дополнительно вводят пеногаситель из расчета 0,0001-0,0002 мас.% на реакционную массу. На второй стадии полученную реакционную массу перемешивают в течение 120-150 мин при температуре 125-130°C, затем повышают температуру до 140°C, после чего продолжают ее перемешивание в течение 240-300 мин. На третьей стадии температуру реакционной массы повышают до 150°C и при достижении этой температуры ее перемешивают в течение 240 мин. Далее полученный продукт с целью дальнейшей стабилизации подвергают вылеживанию по меньшей мере в течение суток в зимнее время и по меньшей мере в течение двух суток в летнее время.

Свойства пеногасителя приведены в табл.3.

На первой стадии происходит образование сульфокислот и сульфоновых полиароматических соединений, на второй - олигомеризация изопрена и поликонденсация олигомеров с компонентами битумов, третья стадия - стабилизация продукта.

Предлагаемую мастичную композицию наносят на обрабатываемую поверхность в расплавленном состоянии, в виде рулонных материалов или в виде раствора (например, посредством растворения в углеводородных растворителях - сольвент нефтяной, неэтилированный бензин). В последнем случае нанесение возможно кистью, шпателем, краскопультом. Вместе с тем возможно нанесение мастичной композиции также на неподготовленные поверхности (например, на старые битумные и пластизольные).

Изменение количественного содержания компонентов композиции позволило получить конечный продукт, который стабилен в течение всего срока эксплуатации мастичной композиции, обладает улучшенными физико-химическими характеристиками, имеет широкую область применения, заявленная мастичная композиция обладает необходимой адгезией к металлической поверхности. Варьирование количественного содержания компонентов композиции в заявленном интервале значений позволяет получить продукт с заданными эксплуатационными показателями (табл. 1).

Изобретение иллюстрируется следующими примерами.

Пример 1.

1 стадия: В нагретый реактор подают расчетное количество битума БНД 90/130, нагретого до температуры 100°C, и абсорбент марки А-2 по ТУ 2411-019-73776139-2009, полученный в процессе получения мономера изопрена для синтетического каучука. Смесь перемешивают при температуре 100°C в течение 150 мин. Затем в реактор подают прикапыванием серную кислоту через дозирующую шайбу со скоростью 50 кг/ч, при этом температура реакционной массы не должна превышать 125°C, одновременно вводят пеногаситель в количестве 5 г на реакционную массу.

Соотношение компонентов реакционной массы составляет, мас.%:

Битум дорожный 88,35 Абсорбент марки А-2 5,08 Серная кислота (95%) 6,57

2 стадия: реакционную смесь перемешивают в течение 120 мин при температуре 125°C. Затем температуру повышают до 140°C и перемешивают реакционную массу ее в течение 300 мин.

3 стадия: Температуру реакционной массы повышают до 150°C и продолжают ее перемешивание в течение 240 мин. Полученный продукт для стабилизации вылеживается в течение двух суток.

Пример 2.

1 стадия: В нагретый реактор подают расчетное количество асфальт пропановой деасфальтизации гудрона (АПД), нагретого до температуры 110°C, и абсорбент марки А-2 по ТУ 38.103349-85. Реакционную массу перемешивают при температуре 110°C в течение 180 мин. Затем в реактор подают прикапыванием серную кислоту через дозирующую шайбу со скоростью 40 кг/ч до достижения температуры реакционной массы 120°C, одновременно вводят пеногаситель в количестве 10 г на реакционную массу.

Соотношение компонентов реакционной массы составляет, мас.%:

Асфальт пропановой деасфальтизации гудрона (АПД) 87,72 Абсорбент марки А-2 7,54 Серная кислота (90%) 4,74

2 стадия: реакционную массу перемешивают в течение 150 мин при температуре 130°C. Затем температуру реакционной смеси повышают до 140°C и перемешивают ее в течение 240 мин.

3 стадия: Температуру реакционной смеси повышают до 150°C и продолжают ее перемешивание в течение 240 мин. Полученный продукт для стабилизации вылеживается в течение суток.

Таблица 1 Физико-химические показатели мастичной композиции Наименование показателя Пример 1 Пример 2 1. Внешний вид Однородная масса черного цвета без видимых посторонних включений 2. Температура размягчения по методу «Кольцо и Шар»,°C 120 87 3.Температура хрупкости по Фраасу, °C, Минус 25 Минус 22 4.Пенетрация (глубина проникания иглы) при 25°C, 0,1 мм, 31 43 5. Растяжимость при 25°C, см, 8,0 7,0 6. Адгезия к металлической подложке: Отсутствует отслаивание от подложки при (20±5)°C при минус (25±5)°C 7. Площадь отслаивания при катодной поляризации покрытия при 20°C в течение 30 суток, см2 2,4 2,7 8. Растворимость в сольвенте, % не менее 99,9 99,9

Таблица 2 Физико-химические показатели абсорбента марки А-2 по ТУ 2411-019-73776139-2009 Наименование показателя Норма 1. Внешний вид Темная без механических примесей жидкость 2. Плотность при 15°C, г/см3 0,80-0,95 3. Фракционный состав: а) температура начала кипения, °C, не ниже 60 б) температура конца кипения, °C, не выше 370 в) количество фракций, выкипающих до температуры 300°C, % объем., не менее 45 4. Испытания на медной пластине выдерживает 5. Массовая доля фактических смол при тридцатидневном хранении, мг/100 см3 12000 6. Массовая доля общей серы, %, не более 1,0 7. Содержание свободной воды, %, не более отсутствует

Таблица 3 Свойства пеногасителя Качественные показатели Внешний вид Вязкая прозрачная жидкость от бесцветной до светло-желтого цвета без механических примесей (допускается опалесценция) Вязкость условная при 20°C 80-160 Реакция среды (pH водной вытяжки) 6-8 (нейтральная)

Похожие патенты RU2543217C1

название год авторы номер документа
ИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ 2013
  • Кульницкий Александр Эммануилович
  • Навотный Олег Игоревич
  • Арзамасцев Сергей Владимирович
  • Стекольников Анатолий Анатольевич
RU2539295C1
Способ получения асмола и антикоррозионная изоляционная лента 2020
  • Гладких Ирина Фаатовна
  • Тимофеев Алексей Николаевич
  • Середюк Евгений Юрьевич
  • Хван Руслан Викторович
RU2746727C1
СПОСОБ ПОЛУЧЕНИЯ АСМОЛА 2010
  • Черкасов Николай Михайлович
  • Гладких Ирина Фаатовна
RU2443751C1
ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ 2013
  • Навотный Олег Игоревич
  • Стекольников Анатолий Анатольевич
  • Тиховский Дмитрий Александрович
  • Арзамасцев Сергей Владимирович
RU2562496C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОЛЯЦИОННОЙ КОМПОЗИЦИИ (ВАРИАНТЫ) 2017
  • Навотный Олег Игоревич
  • Стекольников Анатолий Анатольевич
RU2656486C1
ИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2012
  • Решетов Вячеслав Александрович
  • Ромаденкина Светлана Борисовна
  • Навотный Олег Игоревич
  • Стекольников Анатолий Анатольевич
RU2508304C1
Композиционная кровельная мастика (варианты) и способ ее получения (варианты) 2019
  • Коновалов Николай Петрович
  • Хозеев Евгений Олегович
  • Коновалов Петр Николаевич
  • Вабищевич Кристина Юрьевна
RU2718787C1
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОКОРРОЗИОННОЙ МАСТИКИ НА ОСНОВЕ АСФАЛЬТОСМОЛИСТЫХ ОЛИГОМЕРОВ 2009
  • Галиуллин Талгат Вилевич
  • Галиуллина Елена Геннадьевна
  • Николаев Валерий Николаевич
  • Никифоров Сергей Вячеславович
RU2407773C2
СПОСОБ ПОЛУЧЕНИЯ БИТУМОВ НЕФТЯНЫХ ДОРОЖНЫХ АСФАЛЬТИТСОДЕРЖАЩИХ 2014
  • Гуреев Алексей Андреевич
  • Быстров Николай Викторович
  • Симчук Евгений Николаевич
  • Лакомых Алексей Валерьевич
  • Иконникова Ксения Сергеевна
  • Сухнева Ксения Николаевна
RU2552469C1
ПРОТИВОКОРРОЗИОННЫЙ МАСТИЧНЫЙ МАТЕРИАЛ 2008
  • Николаев Валерий Николаевич
  • Никифоров Сергей Вячеславович
  • Галиуллина Елена Геннадьевна
  • Галиуллин Талгат Вилевич
RU2384601C2

Реферат патента 2015 года МАСТИЧНАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Изобретение относится к составу и способу получения мастичной композиции, применяемой для защиты металлических поверхностей, резервуаров, бетонных и кирпичных поверхностей, а также в качестве компонента для производства антикоррозионных мастик, лаков, эмалей. Композиция содержит, мас.%: битум нефтяной или асфальт пропановой деасфальтизации гудрона (АПД) - 86-90, переработанный абсорбент производств бутадиена и изопрена - 5-8, кислота серная - остальное. Сначала битум нефтяной или АПД перемешивают с абсорбентом при температуре 100-110°C в течение 150-180 мин, после чего в реакционную массу вводят кислоту серную прикапыванием со скоростью 40-50 кг/ч при температуре реакционной массы 110-125°C. Далее полученную реакционную массу перемешивают в течение 120-150 мин при температуре 125-130°C, затем повышают температуру до 140°C, после чего продолжают перемешивание в течение 240-300 мин. Затем температуру реакционной массы повышают до 150°C и перемешивают в течение 240 мин, после чего полученный продукт подвергают вылеживанию. Результатом является получение мастичной композиции с антикоррозионными и гидроизоляционными свойствами, при этом обладающей стабильными эксплуатационными свойствами. 2 н. и 5 з.п. ф-лы, 3 табл., 2 пр.

Формула изобретения RU 2 543 217 C1

1. Мастичная композиция, включающая битум нефтяной или асфальт пропановой деасфальтизации гудрона, абсорбент и кислоту серную, отличающаяся тем, что абсорбент представляет собой переработанный абсорбент производств бутадиена и изопрена, а мастичная композиция содержит компоненты при следующем соотношении, мас.%:
битум нефтяной или асфальт пропановой деасфальтизации гудрона 86-90 абсорбент 5-8 кислота серная остальное.

2. Композиция по п.1, отличающаяся тем, что предпочтительно используют кислоту серную с концентрацией 90-95%.

3. Композиция по п.1, отличающаяся тем, что предпочтительно используют переработанный абсорбент производства изопрена для синтетического каучука.

4. Способ получения мастичной композиции в три стадии, включающий на первой стадии перемешивание битума нефтяного или асфальта пропановой деасфальтизации с абсорбентом с последующим вводом кислоты серной прикапыванием, отличающийся тем, что компоненты взяты по п.1, при этом на первой стадии перемешивание битума нефтяного или асфальта пропановой деасфальтизации с абсорбентом осуществляют при температуре 100-110°С в течение 150-180 мин с последующим вводом кислоты серной прикапыванием при температуре реакционной массы 110-125°С со скоростью 40-50 кг/ч, на второй стадии полученную реакционную массу перемешивают в течение 120-150 мин при температуре 125-130°С, затем повышают температуру реакционной массы до 140°С с последующим перемешиванием ее в течение 240-300 мин, на третьей стадии температуру реакционной массы повышают до 150°С и при ее достижении реакционную массу перемешивают в течение 240 мин, после чего полученный продукт подвергают вылеживанию.

5. Способ по п.4, отличающийся тем, что полученный продукт подвергают вылеживанию по меньшей мере в течение суток в зимнее время и по меньшей мере в течение двух суток в летнее время.

6. Способ по п.4, отличающийся тем, что на второй стадии дополнительно вводят пеногаситель из расчета 0,0001-0,0002 мас.% на реакционную массу.

7. Способ по п.4, отличающийся тем, что на второй стадии ввод кислоты серной осуществляют прикапыванием через дозирующую шайбу.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543217C1

СПОСОБ ПОЛУЧЕНИЯ АСМОЛА 2010
  • Черкасов Николай Михайлович
  • Гладких Ирина Фаатовна
RU2443751C1
БИТУМНАЯ ЭМУЛЬСИЯ 2008
  • Кемалов Руслан Алимович
  • Гладий Евгений Александрович
  • Кемалов Алим Фейзрахманович
  • Ганиева Тамилла Фахтиевна
  • Саяхов Марат Дамирович
  • Кемалова Гульсина Ханафовна
  • Петрова Татьяна Николаевна
  • Фаттахов Дамир Фаридович
RU2407764C2
Способ переработки асфальта деасфальтизации гудрона пропаном 1989
  • Доломатов Михаил Юрьевич
  • Пестриков Станислав Васильевич
  • Юсупов Эдуард Абдрахманович
  • Садыков Рим Хасанович
  • Глазунов Владимир Иванович
  • Масленников Владимир Александрович
  • Хашпер Леонид Моисеевич
  • Кутузов Петр Ильич
  • Вижняев Владимир Иванович
  • Крашенинников Петр Александрович
SU1696454A1
СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО МАТЕРИАЛА 1994
  • Гладких И.Ф.
  • Пестриков С.В.
  • Черкасов Н.М.
  • Субаев И.У.
  • Алексеев В.С.
RU2074224C1
Вяжущее для дорожного строительства 1984
  • Беспалый Аркадий Степанович
  • Шкарапута Леонид Николаевич
  • Даниленко Валерий Васильевич
  • Скляр Владимир Тихонович
  • Болхов Леонид Сергеевич
SU1234407A1
НАБОР СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДОВ ДЛЯ ДИАГНОСТИКИ БОЛЕЗНИ КРОНА И НЕСПЕЦИФИЧЕСКОГО ЯЗВЕННОГО КОЛИТА ПУТЕМ ВЫЯВЛЕНИЯ МАРКЕРНЫХ УЧАСТКОВ БАКТЕРИАЛЬНОЙ ДНК МЕТОДОМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ 2015
  • Алексеев Дмитрий Глебович
  • Павленко Александр Владимирович
  • Каныгина Александра Васильевна
RU2601132C1
US 7446139 B2, 04.11.2008

RU 2 543 217 C1

Авторы

Подлипчук Ирина Евгеньевна

Тимашева Фания Галимьяновна

Сухарева Гузель Мазгаровна

Даты

2015-02-27Публикация

2013-09-27Подача