СПОСОБ ПОЛУЧЕНИЯ РАДИОТЕХНИЧЕСКОГО МАТЕРИАЛА Российский патент 2015 года по МПК C04B35/80 

Описание патента на изобретение RU2544356C1

Изобретение относится к конструкционным, электротехническим и теплозащитным материалам и предназначено для изготовления материала на основе фосфатного связующего и преимущественно кварцевой стеклоткани для использования в теплонагруженных изделиях и конструкциях радиотехнического назначения, в теплоизоляционных изделиях, работающих при температурах от минус 60°C до плюс 800°C длительно в авиационной, космической и других областях промышленности.

Известен способ получения высокотемпературного электроизоляционного стеклотекстолита, включающий смешение алюмофосфатного связующего с оксидом алюминия, совмещение полученной композиции со стеклотканью и отверждение при повышенных температуре и давлении (RU 2076086, кл. С04В 35/80, опубл. 27.03.1997 г.).

Недостатками указанного способа являются высокая плотность материала и недостаточно высокие прочностные и диэлектрические характеристики.

Наиболее близким по технической сущности к предлагаемому решению является способ получения радиотехнического материала на алюмохромофосфатном связующем, включающий смешение алюмохромофосфатного связующего с порошком электроплавленого корунда, совмещение полученной композиции со стекловолокнистым наполнителем и отверждение при повышенных температуре и давлении (RU 2220930, кл. С04В 35/80, С04В 28/34, опубл. 10.01.2004 г.).

В известном способе пропитку предварительно аппретированной 3-7% спиртовым раствором кремнийорганической смолы кварцевой или кремнеземной стеклоткани проводят смесью хромалюмофосфатного связующего марки ХАФС-3 в смеси с электроплавленым корундом дисперсностью 10-15 мкм в соотношении 1:1. Отверждение материала осуществляют при удельном давлении 0,95-1,05 МПа и подъеме температуры до 270°С±5°C со скоростью 17-18 град/час.

Недостатками указанного способа получения радиотехнического материала являются недостаточно высокие прочностные и диэлектрические характеристики при повышенных температурах.

Задачей, решаемой предлагаемым способом получения радиотехнического материала, является обеспечение повышенной термостойкости стеклотекстолита с сохранением высоких прочностных и диэлектрических характеристик.

Технический результат достигается предлагаемым способом получения радиотехнического материала, включающим смешение алюмохромофосфатного связующего с порошком электроплавленого корунда, нанесение полученной композиции на кварцевую или кремнеземную стеклоткань, аппретированную раствором кремнийорганической смолы КМ-9К, содержащим спирт, и отверждение при заданных температуре и давлении, отличающимся тем, что в качестве алюмохромофосфатного связующего используют алюмохромфосфатное связующее марки Фоскон-351, в качестве электроплавленого корунда используют порошок белого электрокорунда, соотношение алюмохромофосфатного связующего марки Фоскон-351 и порошка белого электрокорунда составляет 55-65% мас:35-45% мас. соответственно, в качестве аппрета используют 10-15% спирто-ацетоновый раствор кремнийорганической смолы КМ-9К, в котором соотношение спирта и ацетона 1:1, после аппретирования кварцевой или кремнеземной стеклоткани ее подсушивают при комнатной температуре не менее 10 часов, после чего наносят полученную композицию и отверждают под вакуумом при удельном давлении 0,8МПа при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов или в замкнутой форме при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов, после чего дополнительно проводят термообработку полученного материала при подъеме температуры до 300°C и выдержке в течение 3-4 часов, затем полученный материал охлаждают до комнатной температуры и проводят его пропитку кремнийорганической смолой марки МФСС-8 в течение 1-2 часов с последующей сушкой на воздухе не менее 4-х часов и полимеризацией в термостате путем нагрева до температуры 320°C и выдержки при этой температуре в течение 2-3 часов.

Связующее Фоскон-351 представляет собой водные растворы кислых фосфорнокислых солей алюминия и хрома (ТУ 2149-150-10964029-01). Предложенный оксидный состав алюмохромофосфатного связующего обладает необходимой кислотностью и вязкостью раствора, что приводит к получению прочного, термостойкого материала.

Для повышения адгезии и снижения содержания воды в связующее добавляют мелкодисперсный белый электрокорунд дисперсностью 5-10 мкм.

Отверждение материала при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов обусловлено химической природой алюмохромофосфатного связующего Фоскон-351, отверждение которого происходит при удалении воды и переходе кислых фосфатов в средние. Для получения водостойкого прочного материала отверждение проводится при ступенчатом подъеме температуры для равномерного удаления паров воды и структурных переходов фосфатов в водостойкую форму.

Термообработка материала при температуре 300°C обеспечивает стабилизацию диэлектрических и прочностных характеристик материала. При этой температуре происходит окончательный переход кислых фосфатов в водостойкую форму средних фосфатов и перераспределение напряжений на материале.

Продукт МФСС-8 - метилфенилспиросилоксан - олигомер с молярным весом 2200 выпускается в виде ацетонового раствора плотностью 0,91-0,97 г/см3, не содержит функциональных групп и отверждается без выделения побочных веществ. Продукт МФСС-8 является типичным представителем полиорганосилоксанов спироциклического строения (ТУ 6-02-1352-87).

Проведения полимеризации при температуре 320°C обусловлено тем, что при этой температуре происходит образование пространственной структуры кремнийорганической смолы; причем образование циклов повышенной термостойкости зависит не только от температуры, но и от времени выдержки при этой температуре. Время выдержки в течение 2-3 часов обеспечивает получение материала заданной прочности и термостойкости.

Примеры конкретного выполнения способа получения радиотехнического материала

Пример 1. На кварцевую стеклоткань ТС 8/3-К-ТО, аппретированную 10% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, наносили смесь, состоящую из 65% мас. связующего Фоскон-351 и 35% мас. порошка белого электрокорунда зернистостью 5-10 мкм, отверждали методом вакуумного формования при удельном давлении 0,8 МПа при подъеме температуры до 170°C и выдержке при этой температуре 2 часа, затем подвергали термообработке при конечной температуре 300°C и выдержке при этой температуре в течение 3-х часов. Затем охлаждали до комнатной температуры, производили пропитку окунанием материала в емкость с продуктом МФСС-8 и выдержкой в ней в течение 2-х часов. Далее материал помещали в термостат и полимеризовали при температуре 320°C в течение 2 часов.

Характеристики радиотехнического материала представлены в таблице.

Пример 2. Пример 2 осуществляли по примеру 1, но на кварцевую стеклоткань ТС 8/3-К-ТО, аппретированную 12% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, наносили смесь, состоящую из 55% мас. связующего Фоскон-351 и 45% мас. порошка белого электрокорунда зернистостью 5-10 мкм, подвергали термообработке при конечной температуре 300°C и выдержке при этой температуре в течение 3,5 часов. Затем охлаждали до комнатной температуры, производили пропитку окунанием материала в емкость с продуктом МФСС-8 и выдержкой в ней в течение 1,5 часов. Далее материал помещали в термостат и полимеризовали при температуре 320°C в течение 2,5 часов.

Характеристики радиотехнического материала представлены в таблице.

Пример 3. Пример 3 осуществляли по примеру 1, но на кремнеземную стеклоткань МКТ-3,0, аппретированную 15% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, наносили смесь, состоящую из 60% мас. связующего Фоскон-351 и 40% мас. порошка белого электрокорунда зернистостью 5-10 мкм, материал отверждали в замкнутой форме при подъеме температуры до 170°C и выдержке при этой температуре 2,5 часа с последующей термообработкой при конечной температуре 300°C и выдержке при этой температуре в течение 4 часов. Затем охлаждали до комнатной температуры, производили пропитку окунанием материала в емкость с продуктом МФСС-8 и выдержкой в ней в течение 1 часа. Далее материал помещали в термостат и полимеризовали при температуре 320°C в течение 3 часов.

Характеристики радиотехнического материала представлены в таблице.

Дополнительное введение порошка белого электрокорунда ухудшает механические свойства (возрастает пористость КМ). Уменьшение количества порошка белого электрокорунда ухудшает теплофизические свойства материала.

Из таблицы видно, что использование предлагаемого способа получения радиотехнического материала позволяет изготовить материал, сохраняющий высокие прочностные свойства без изменения диэлектрических характеристик в условиях повышенных температур. В таблице приведены сравнительные характеристики радиотехнического материала по примерам 1-3 и прототипа.

Показатели По примеру 1 По примеру 2 По примеру 3 Прототип Плотность, г/см3 1,70 1,79 1,70 1,7-1,85 Предел прочности при изгибе, кгс/см2 при температуре 20°C 1420 1330 1420 700-1300 600°C 370 340 370 - 800°C 370 360 370 - 1000°C 530 470 530 - Диэлектрическая проницаемость при частоте 1010 Гц при температуре 20°C 3,40 3,40 3,40 3,5-4,1 300°C 3,40 3,40 3,40 - 400°C 3,40 3,40 3,40 - 700°C 3,44 3,44 3,44 800°C 3,48 3,48 3,48 - Тангенс угла диэлектрических потерь tg×104 при частоте 1010 Гц при температуре 20°C 78 78 78 - 300°C 110 110 110 - 600°C 72 72 72 - 800°C 80 80 80

Похожие патенты RU2544356C1

название год авторы номер документа
Способ получения термостойкого радиотехнического материала на основе алюмохромфосфатного связующего 2022
  • Атрощенко Ирина Григорьевна
  • Степанов Петр Александрович
  • Русин Михаил Юрьевич
  • Козик Виталий Григорьевич
  • Вертинский Константин Юрьевич
RU2806979C1
Способ получения термостойкого радиотехнического материала 2022
  • Атрощенко Ирина Григорьевна
  • Степанов Петр Александрович
  • Русин Михаил Юрьевич
  • Козик Виталий Григорьевич
  • Вертинский Константин Юрьевич
RU2788505C1
Способ получения многослойного термостойкого радиотехнического материала 2022
  • Атрощенко Ирина Григорьевна
  • Степанов Петр Александрович
  • Русин Михаил Юрьевич
  • Козик Виталий Григорьевич
  • Вертинский Константин Юрьевич
RU2785836C1
Композиционный материал из углеткани и фосфатного связующего и способ его получения 2023
  • Андрианова Кристина Александровна
  • Амирова Лилия Миниахмедовна
  • Гайфутдинов Амир Марсович
  • Таишев Булат Рустамович
RU2808804C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕРМОСТОЙКОГО РАДИОПРОЗРАЧНОГО МАТЕРИАЛА (ИЗДЕЛИЯ) НА ОСНОВЕ ФОСФАТНОГО СВЯЗУЮЩЕГО И КВАРЦЕВОЙ ТКАНИ 2015
  • Бородай Феодосий Яковлевич
  • Неповинных Любовь Константиновна
  • Степанов Петр Александрович
  • Ролецкая Надежда Александровна
  • Шуткина Ольга Владимировна
RU2596619C1
Способ получения радиотехнического материала 2002
  • Пронин Б.Ф.
  • Камалов А.Д.
  • Арсланова Н.И.
  • Волик Н.И.
  • Цыруль Н.П.
  • Тазитдинова Н.В.
RU2220930C1
Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения 2015
  • Бородай Феодосий Яковлевич
  • Неповинных Любовь Константиновна
  • Степанов Петр Александрович
RU2610048C2
Радиопрозрачная термостойкая трехслойная сотовая конструкция 2022
  • Корнейчук Алексей Николаевич
  • Волков Валерий Семенович
  • Чугунов Сергей Алексеевич
  • Кулагина Ирина Вячеславовна
  • Томчани Ольга Васильевна
RU2777234C1
Термостойкая трехслойная сотовая конструкция 2021
  • Волков Валерий Семенович
  • Корнейчук Алексей Николаевич
  • Кулагина Ирина Вячеславовна
  • Чугунов Сергей Алексеевич
  • Никулина Ольга Владимировна
  • Степанов Петр Александрович
RU2768416C1
Стенка широкополосного обтекателя 2020
  • Крылов Виталий Петрович
  • Степанов Петр Александрович
  • Никулина Ольга Владимировна
  • Шадрин Александр Петрович
  • Подольхов Иван Васильевич
RU2755584C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ РАДИОТЕХНИЧЕСКОГО МАТЕРИАЛА

Изобретение относится к конструкционным, электротехническим и теплозащитным материалам. Технический результат изобретения заключается в повышении термостойкости радиотехнического материала с сохранением высоких прочностных и диэлектрических характеристик. Способ получения радиотехнического материала включает смешение алюмохромофосфатного связующего Фоскон-351 с порошком белого электрокорунда при соотношении 55-65 мас.%:35-45 мас.%. Полученную композицию наносят на стеклоткань, предварительно аппретированную 10-15% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, в котором соотношение спирта и ацетона 1:1. Проводят отверждение методом вакуумного формования при удельном давлении 0,8 МПа при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов или отверждение в замкнутой форме при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов. Дополнительную термообработку полученного материала осуществляют при подъеме температуры до 300°C и выдержке при этой температуре в течение 3-4 часов с последующим охлаждением до комнатной температуры. Полученный материал пропитывают кремнийорганической смолой марки МФСС-8 в течение 1-2 часов с последующей сушкой на воздухе не менее 4-х часов и проведением режима полимеризации в термостате путем нагрева до температуры 320°C и выдержки при этой температуре в течение 2-3 часов. 1 табл.

Формула изобретения RU 2 544 356 C1

Способ получения радиотехнического материала, включающий смешение алюмохромофосфатного связующего с порошком электроплавленого корунда, нанесение полученной композиции на кварцевую или кремнеземную стеклоткань, аппретированную раствором кремнийорганической смолы КМ-9К, содержащим спирт, и отверждение при заданных температуре и давлении, отличающийся тем, что в качестве алюмохромофосфатного связующего используют алюмохромфосфатное связующее марки Фоскон-351, в качестве электроплавленого корунда используют порошок белого электрокорунда, соотношение алюмохромофосфатного связующего марки Фоскон-351 и порошка белого электрокорунда составляет 55-65% мас:35-45% мас. соответственно, в качестве аппрета используют 10-15% спирто-ацетоновый раствор кремнийорганической смолы КМ-9К, в котором соотношение спирта и ацетона 1:1, после аппретирования кварцевой или кремнеземной стеклоткани ее подсушивают при комнатной температуре не менее 10 часов, после чего наносят полученную композицию и отверждают под вакуумом при удельном давлении 0,8МПа при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов или в замкнутой форме при подъеме температуры до 170°C и выдержке при этой температуре не менее 2-х часов, после чего дополнительно проводят термообработку полученного материала при подъеме температуры до 300°C и выдержке в течение 3-4 часов, затем полученный материал охлаждают до комнатной температуры и проводят его пропитку кремнийорганической смолой марки МФСС-8 в течение 1-2 часов с последующей сушкой на воздухе не менее 4-х часов и полимеризацией в термостате путем нагрева до температуры 320°C и выдержки при этой температуре в течение 2-3 часов.

Документы, цитированные в отчете о поиске Патент 2015 года RU2544356C1

Способ получения радиотехнического материала 2002
  • Пронин Б.Ф.
  • Камалов А.Д.
  • Арсланова Н.И.
  • Волик Н.И.
  • Цыруль Н.П.
  • Тазитдинова Н.В.
RU2220930C1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО ЭЛЕКТРОИЗОЛЯЦИОННОГО СТЕКЛОТЕКСТОЛИТА 1993
  • Захаров И.А.
  • Крылова З.Ф.
  • Дорожкина Л.И.
  • Борисов В.А.
RU2076086C1
КОМПОЗИЦИЯ СТЕКЛОТЕКСТОЛИТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2001
  • Крылова З.Ф.
  • Соколова А.Е.
  • Андриянец В.Н.
  • Захаров И.А.
RU2211201C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО ЭЛЕКТРОИЗОЛЯЦИОННОГО СТЕКЛОТЕКСТОЛИТА 1999
  • Крылова З.Ф.
  • Андриянец В.Н.
  • Красинский И.Э.
  • Коршунов А.В.
RU2162458C1
СПОСОБ ПОЛУЧЕНИЯ КОНСТРУКЦИОННОГО МАТЕРИАЛА НА ФОСФАТНОМ СВЯЗУЮЩЕМ 1991
  • Арсланова Н.И.
  • Бушуев Ю.Г.
  • Камалов А.Д.
  • Кириллов В.Н.
  • Пронин Б.Ф.
  • Фургина Х.К.
  • Цыруль Н.П.
  • Чистяков А.М.
RU2015948C1
WO 1985004835 A, 07.11.1985

RU 2 544 356 C1

Авторы

Степанов Петр Александрович

Шуткина Ольга Владимировна

Мельников Дмитрий Алексеевич

Стародубцева Надежда Ивановна

Крылов Виталий Петрович

Даты

2015-03-20Публикация

2014-03-05Подача