СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО РАДИОКОНТРОЛЯ ПОДВИЖНЫХ ОБЪЕКТОВ Российский патент 2015 года по МПК G01S5/02 

Описание патента на изобретение RU2546330C1

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Технология скрытного обнаружения и слежения за объектами, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения: широковещательные (УКВ FM-радиовещание, ДМВ цифровое телевидение), информационные (связь) и измерительные (управление, навигация), пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить эффективность обнаружения, пространственной локализации и идентификации широкого класса подвижных объектов.

Принятый радиосигнал, как правило, включает мощные прямые радиосигналы и рассеянные от земной инфраструктуры компоненты сигнала выбранного передатчика радиоподсвета целей. Кроме того, он содержит задержанные по времени и сдвинутые на частоту доплеровского смещения рассеянные объектами сигналы, а также сигналы других неконтролируемых источников, работающих на частоте, совпадающей с частотой приема. Для эффективного обнаружения и точной пространственной локализации широкого класса объектов (автомобили, корабли, самолеты и беспилотные летательные аппараты, вертолеты, ракеты, спускаемые аппараты) необходимо качественное выделение слабых рассеянных от объектов радиосигналов на фоне мощного прямого сигнала выбранного передатчика радиоподсвета, а также на фоне сигналов других нежелательных источников. В наиболее типичных ситуациях уровень помех на 40-60 дБ превышает уровень рассеянных сигналов.

Системы скрытной радиолокации включают канал приема прямого сигнала передатчика подсвета и разведывательный канал.

Традиционно в системах скрытной радиолокации частичное подавление помехи в виде прямого сигнала передатчика подсвета осуществляется за счет минимизации боковых лепестков, формирования нуля в диаграмме направленности антенны или адаптивной пространственной фильтрации полезных сигналов в разведывательном канале.

Дополнительное подавление прямого сигнала может быть достигнуто за счет использования в разведывательном канале антенны с поляризацией, ортогональной к поляризации радиосигнала передатчика подсвета.

Однако лучшие характеристики систем скрытной радиолокации могут быть достигнуты при использовании двух разведывательных каналов с ортогональными поляризациями. Это обусловлено тем, что рассеянный целью сигнал, как правило, имеет случайную поляризацию. Как следствие, некогерентное суммирование изображений в координатах «временная задержка (дальность) - доплеровская частота (скорость)», формируемых с использованием радиосигналов двух ортогональных поляризаций, обеспечивает увеличение среднего отношения сигнал/шум по сравнению с использованием единственной фиксированной поляризации. Кроме того, это повышает устойчивость процедуры обнаружения к канальным и межканальным помехам, как правило, имеющим отличную от полезного сигнала поляризацию.

Известен способ поляризационно-чувствительного радиоконтроля подвижных объектов [1], включающий прием рассеянных подвижными объектами радиосигналов неизвестной поляризации малобазовой антенной решеткой, состоящей из ортогонально расположенных антенн с совмещенными фазовыми центрами, формирование ансамбля радиосигналов, зависящего от времени и номера антенны, синхронное преобразование ансамбля принятых радиосигналов в цифровые сигналы, преобразование цифровых сигналов пар противоположных антенн в комплексные квадратурные составляющие дипольного и квадрупольного выходных сигналов, определение наличия рассеянных подвижными объектами радиосигналов и направлений их прихода по сигналам квадратурных составляющих дипольного и квадрупольного выходных сигналов.

Данный способ обеспечивает повышенную устойчивость обнаружения и пространственной локализации к поляризационным ошибкам. Однако этот способ относится к классу способов малобазового пеленгования, что является принципиальным ограничением на пути достижения потенциально возможных точностей пространственной локализации подвижных объектов.

Известен способ поляризационно-чувствительного радиоконтроля подвижных объектов [2], свободный от этих недостатков и принятый за прототип. Согласно этому способу:

используют прямые и рассеянные подвижными объектами радиосигналы, излучаемые широкополосными передатчиками радиоэлектронных систем различного назначения;

принимают решеткой из N антенн компоненты горизонтальной и вертикальной поляризации векторного многолучевого электромагнитного поля прямого и рассеянных радиосигналов;

синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы;

цифровые сигналы преобразуют в двухкомпонентные прямые s ˜ = [ s ˜ h s ˜ v ] и рассеянные s = [ s h s v ] сигналы для выбранных азимутально-угломестных направлений приема, где h и v - индексы компонент горизонтальной и вертикальной поляризации, которые совместно со значением азимутально-угломестного направления приема запоминают;

вычисляют и сравнивают энергию компонент s ˜ h 2 и s ˜ v 2 прямого сигнала;

выбирают компоненту прямого сигнала с максимальной энергией s ˜ m a x h , v ;

преобразуют компоненту прямого сигнала с максимальной энергией s ˜ m a x h , v в матричный сигнал комплексной фазирующей функции A, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом;

для каждого выбранного азимутально-угломестного направления приема преобразуют рассеянный сигнал s в сигналы компонент комплексного частотно-временного изображения hh=(AHA)-1AHsh и hv=(AHA)-1AHsv, где AH - матрица, эрмитово сопряженная с A;

после чего по локальным максимумам суммы квадратов модулей элементов компонент комплексного частотно-временного изображения | h z h | 2 + | h z v | 2 , где h z h и h z v - z-е элементы сигналов компонент hh и hv, определяют число рассеянных радиосигналов, по параметрам которых - значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления приема - выполняют обнаружение и пространственную локализацию подвижных объектов.

Способ-прототип реализует достаточно эффективное обнаружение и пространственную локализацию подвижных объектов в условиях неизвестной поляризации рассеянных объектами сигналов.

Однако способ-прототип при формировании сигналов компонент горизонтальной и вертикальной поляризации комплексного частотно-временного изображения использует операции, основанные на формировании классической двумерной взаимной корреляционной функции, которая кроме основного лепестка содержит высокие боковые лепестки, маскирующие сигналы далеких и слаборассеивающих объектов.

Таким образом, недостатком способа-прототипа является низкая вероятность радиоконтоля далеких и слаборассеивающих объектов.

Техническим результатом изобретения является повышение вероятности обнаружения и правильной пространственной локализации далеких и слаборассеивающих объектов.

Повышение вероятности обнаружения и правильной пространственной локализации достигается за счет применения новых операций адаптивной обработки с обратной связью по полезному радиосигналу, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек.

Технический результат достигается тем, что в способе поляризационно-чувствительного радиоконтроля подвижных объектов, заключающемся в том, что используют прямые и рассеянные подвижными объектами радиосигналы, излучаемые широкополосными передатчиками радиоэлектронных систем различного назначения, принимают решеткой из N антенн компоненты горизонтальной и вертикальной поляризации векторного многолучевого электромагнитного поля прямого и рассеянных радиосигналов, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, цифровые сигналы преобразуют в двухкомпонентные прямые s ˜ = [ s ˜ h s ˜ v ] и рассеянные s = [ s h s v ] сигналы для выбранных азимутально-угломестных направлений приема, где h и v - индексы компонент горизонтальной и вертикальной поляризации, которые совместно со значением азимутально-угломестного направления приема запоминают, вычисляют и сравнивают энергию компонент s ˜ h 2 и s ˜ v 2 прямого сигнала, выбирают компоненту прямого сигнала с максимальной энергией s ˜ m a x h , v , преобразуют компоненту прямого сигнала с максимальной энергией s ˜ m a x h , v в матричный сигнал комплексной фазирующей функции A, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, согласно изобретению из матричного сигнала комплексной фазирующей функции A формируют блочный матричный сигнал фазирующей функции A ˜ = [ A 0 0 A ] , блочный матричный сигнал фазирующей функции A ˜ запоминают, для каждого выбранного азимутально-угломестного направления приема преобразуют рассеянный сигнал s в двухкомпонентный сигнал комплексного частотно-временного изображения h ( 0 ) = ( A ˜ H A ˜ ) 1 A ˜ H s , где h ( 0 ) = [ h ( 0 ) h h ( 0 ) v ] , A ˜ H - матрица, эрмитово сопряженная с A ˜ , двухкомпонентный сигнал h(0) запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал Λ ( h ( k 1 ) ) = d i a g { ( | h z ( k 1 ) , h | 2 + | h z ( k 1 ) , v | 2 ) 1 / 2 / 2 } , h z ( k 1 ) , h и h z ( k 1 ) , v и - z-е элементы компонент h(k-1),h и h(k-1),v сигнала h(k-1), k=1, 2, … - номер итерации, блочный вспомогательный матричный сигнал Λ ˜ ( h ( k 1 ) ) = [ Λ ( h ( k 1 ) ) 0 0 Λ ( h ( k 1 ) ) ] и двухкомпонентный сигнал очередного приближения комплексного частотно-временного изображения h ( k ) = [ A ˜ H A ˜ + λ Λ ˜ ( h ( k 1 ) ) ] 1 A ˜ H s , где λ - множитель Лагранжа, до тех пор, пока энергия разности текущего и запомненного предыдущего частотно-временных изображений не достигнет заданного малого значения [ h ( k ) , h h ( k 1 ) , h 2 + h ( k ) , v h ( k 1 ) , v 2 ] δ , после чего по локальным максимумам суммы квадратов модулей элементов компонент текущего частотно-временного изображения | h z ( k ) , h | 2 + | h z ( k ) , v | 2 определяют число рассеянных радиосигналов, по параметрам которых - значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления приема - выполняют обнаружение и пространственную локализацию подвижных объектов.

Операции способа поясняются чертежами:

фиг.1 - структурная схема устройства поляризационно-чувствительного радиоконтроля подвижных объектов.

фиг.2 - результаты моделирования процесса поляризационно-чувствительного обнаружения и частотно-временной локализации подвижных объектов предложенным способом.

фиг.3 - результаты моделирования процесса поляризационно-чувствительного обнаружения и частотно-временной локализации подвижных объектов при использовании способа-прототипа.

Для оценки сравнительной эффективности предложенного способа выполнено моделирование на ПЭВМ.

При моделировании использовались полунатурные данные, построенные на основе измеренного с частотой дискретизации 318785 Гц сигнала звукового сопровождения 49 канала аналогового телевидения. Длина последовательности анализируемого сигнала равнялась 65536 отсчетам.

Измеренный сигнал использовался в качестве прямого сигнала. Он же с добавкой белого шума с уровнем минус 30 дБ и уменьшенных по амплитуде, задержанных по времени и сдвинутых по Доплеру копий измеренного сигнала использовался в качестве разведываемого сигнала. Рассматриваемый сценарий включал прямой сигнал передатчика подсвета и сигналы, рассеиваемые шестью объектами. Первые два объекта стационарные, а остальные подвижные. Уровни сигналов стационарных объектов на 20 дБ ниже уровня прямого сигнала, а уровни сигналов остальных объектов в среднем ниже на 60 дБ.

Размеры координатной сетки задержка-доплеровский сдвиг выбирались равными 101×101, шаг по задержке 3.1369 мкс, по доплеровскому сдвигу 4.8643 Гц.

На фиг.2 и фиг.3 представлены частотно-временные изображения рассеянных объектами радиосигналов, сформированные предложенным способом и способом-прототипом соответственно.

Из сравнения этих изображений следует, что предложенный способ обеспечивает обнаружение и частотно-временную локализацию сигналов от всех шести объектов. В тоже время способ-прототип обеспечивает обнаружение только слившихся сигналов от первого и второго объектов.

Устройство (фиг.1), в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1 и вычислительную систему 2.

В свою очередь система приема и предварительной обработки 1 включает антенную решетку 1-1, тракт приема прямых и рассеянных сигналов, включающий преобразователь частоты 1-2, АЦП 1-3 и устройство адаптивной пространственной фильтрации 1-4.

При этом система 2 имеет выход, предназначенный для подключения к внешним системам.

Система 1 является аналогово-цифровым устройством и предназначена для адаптивной пространственной фильтрации полезных прямых и рассеянных объектами радиосигналов.

Антенная решетка 1-1 состоит из N антенн с номерами n = 1 , N ¯ . Каждая антенна обеспечивает одновременный ненаправленный или направленный прием двух скалярных полей - ортогональных составляющих поляризованной волны в точке приема, и имеет два отдельных выхода для радиосигналов горизонтальной (h) и вертикальной (v) поляризаций.

Пространственная конфигурация антенной решетки может быть произвольной: плоской прямоугольной, плоской кольцевой или объемной, в частности конформной.

Преобразователь частоты 1-2 является 2N-канальным, выполнен с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов.

АЦП 1-3 также является 2N-канальным и синхронизирован сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан). Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, то вместо преобразователя частоты 1-2 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме этого, преобразователь частоты 1-2 обеспечивает подключение одной из антенн вместо всех антенн решетки для периодической калибровки приемных каналов по внешнему источнику сигнала. Возможна калибровка с использованием внутреннего генератора, выход которого также подключается вместо всех антенн для периодической калибровки каналов (для упрощения внутренний генератор на схеме не показан).

Устройство адаптивной пространственной фильтрации 1-4 представляет собой вычислительное устройство.

Вычислительная система 2 предназначена для итерационного формирования двухкомпонентного сигнала комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек, а также обнаружения и пространственной локализации подвижных объектов.

Устройство работает следующим образом.

В системе 2 на основе данных от внешних систем идентифицируется, выбирается и периодически обновляется совокупность передатчиков, излучающих радиосигналы с расширенным спектром.

Параметры выбранного множества передатчиков (номер, несущая частота, ширина спектра, форма, параметры синхронизации и мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно точки приема) запоминаются в системе 2, а также используются для настройки преобразователя 1-2. С целью упрощения цепи управления преобразователем не показаны.

Преобразователь частоты 1-2 по сигналам системы 2 перестраивается на заданную частоту приема.

Принятое каждой антенной с номером n решетки 1-1 векторное многолучевое электромагнитное поле прямого и рассеянных радиосигналов в виде зависящих от времени t радиосигналов горизонтальной x n h ( t ) и вертикальной x n v ( t ) поляризаций поступает на входы преобразователя частоты 1-2.

В преобразователе частоты 1-2 каждый принятый радиосигнал x n h ( t ) и x n v ( t ) фильтруется по частоте и переносится на более низкую частоту.

Сформированный в преобразователе 1-2 ансамбль радиосигналов x n h ( t ) и x n v ( t ) синхронно преобразуется с помощью АЦП 1-3 в цифровые сигналы x 1 h ( i ) ,…, x N h ( i ) и x 1 v ( i ) ,…, x N v ( i ) , где i - номер временного отсчета сигнала, которые поступают в устройство 1-4, где запоминаются.

В устройстве 1-4 цифровые сигналы преобразуются в двухкомпонентный прямой сигнал s ˜ = [ s ˜ h s ˜ v ] и двухкомпонентные рассеянные сигналы s = [ s h s v ] для выбранных азимутально-угломестных направлений приема, где h и v - индексы компонент горизонтальной и вертикальной поляризации.

Преобразование цифровых сигналов в двухкомпонентный прямой сигнал s ˜ и двухкомпонентные рассеянные сигналы s для выбранных азимутально-угломестных направлений приема осуществляется известными способами адаптивной пространственной фильтрации [3].

При этом, например, из цифровых сигналов горизонтальной поляризаций x 1 h ( i ) ,…, x N h ( i ) формируется сигнал пространственной корреляционной матрицы входных сигналов R. Сигнал корреляционной матрицы R преобразуется в сигнал оптимального весового вектора для формирования прямого w=R-1η сигналов, где η - вектор наведения, определяемый азимутально-угломестным направлением приема прямого радиосигнала, длиной волны (частотой fk) и геометрией решетки.

После этого цифровые сигналы x 1 h ( i ) ,…, x N h ( i ) объединяются в матричный цифровой сигнал X, преобразованием которого формируется сигнал sh=wHX, являющийся векторным сигналом компоненты горизонтальной поляризации прямого сигнала s ˜ h = { s h ( 1 ) , , s h ( i ) , , s h ( I ) } T , где { } T - означает транспонирование, I - число временных отсчетов сигнала, принятого в выбранном азимутально-угломестном направлении.

Аналогично осуществляется формирование компоненты вертикальной поляризации прямого сигнала s ˜ v , а также компонент sh и sv рассеянных сигналов для выбранных азимутально-угломестных направлений приема.

Физически описанные операции адаптивной пространственной фильтрации обеспечивают одновременный направленный прием с заданных направлений двух компонент полезного прямого сигнала выбранного передатчика подсвета и двух компонент полезного рассеянного сигнала с одновременным подавлением широкого класса помех, приходящих с других направлений.

Полученные двухкомпонентные сигналы совместно со значением азимутально-угломестного направления приема поступают в вычислительную систему 2, где запоминаются.

В вычислительной системе 2 выполняются следующие действия:

- вычисляется и сравнивается энергия компонент s ˜ h 2 и s ˜ v 2 прямого сигнала;

- выбирается компонента прямого сигнала с максимальной энергией s ˜ m a x h , v ;

- преобразуется компонента прямого сигнала с максимальной энергией s ˜ m a x h , v в матричный сигнал комплексной фазирующей функции A, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом.

Преобразование компонент прямого сигнала с максимальной энергией s ˜ m a x h , v в матричный сигнал A осуществляется по следующей формуле: A = [ D s ˜ m a x , 0 h , v , , D s ˜ m a x , q h , v , , D s ˜ m a x , Q - 1 h , v ] , где s ˜ m a x , q h , v = [ s ˜ m a x , ( 1 - q ) h , v , , s ˜ m a x , ( I - q ) h , v ] T - векторы размером I×1, являющиеся сдвинутыми по времени на qTs версиями прямого сигнала, s ˜ m a x h , v ,…, q=0,…,Q-1, Q - число временных задержек прямого сигнала, Ts - период выборки сигнала;

D=[D-L,…,D-l,…,D0,…,D+l,…,D+L], D l = [ 1 0 0 0 e j 2 π l / I 0 0 0 e j 2 π l ( I - 1 ) / I ]

- матрицы доплеровских сдвигов, l=0,…,±L, L - размер координатной сетки по доплеровскому сдвигу. Размеры матриц Dl и D соответственно равны I×I и I×I(2L+1).

Таким образом, столбцы матрицы A представляют собой задержанные по времени и сдвинутые по частоте доплеровского сдвига версии прямого сигнала s ˜ m a x h , v , а размер этой матрицы I×Q(2L+1) определяется числом отсчетов в разведываемом сигнале (длительностью интервала наблюдения) и размерами координатной сетки по временному запаздыванию и доплеровскому сдвигу частоты;

- из матричного сигнала комплексной фазирующей функции A формируется блочный матричный сигнал фазирующей функции A ˜ = [ A 0 0 A ]

- блочный матричный сигнал фазирующей функции A ˜ запоминается.

После этого в вычислительной системе 2 для каждого выбранного азимутально-угломестного направления приема выполняются следующие действия:

- рассеянный сигнал s преобразуется в двухкомпонентный сигнал комплексного частотно-временного изображения h ( 0 ) = ( A ˜ H A ˜ ) 1 A ˜ H s , где h ( 0 ) = [ h ( 0 ) h h ( 0 ) v ] , A ˜ H - матрица, эрмитово сопряженная с A ˜ ;

- двухкомпонентный сигнал h(0) запоминается и используется в качестве начального приближения;

- итерационно формируются зависящий от предыдущего решения вспомогательный матричный сигнал Λ ( h ( k 1 ) ) = d i a g { ( | h z ( k 1 ) , h | 2 + | h z ( k 1 ) , v | 2 ) 1 / 2 / 2 } , где h z ( k 1 ) , h и h z ( k 1 ) , v и - z-е элементы компонент h(k-1),h и h(k-1),v сигнала h(k-1), k=1, 2, … - номер итерации, блочный вспомогательный матричный сигнал Λ ˜ ( h ( k 1 ) ) = [ Λ ( h ( k 1 ) ) 0 0 Λ ( h ( k 1 ) ) ] и двухкомпонентный сигнал очередного приближения комплексного частотно-временного изображения h ( k ) = [ A ˜ H A ˜ + λ Λ ˜ ( h ( k 1 ) ) ] 1 A ˜ H s , где λ - множитель Лагранжа, до тех пор, пока энергия разности текущего и запомненного предыдущего частотно-временных изображений не достигнет заданного малого значения [ h ( k ) , h h ( k 1 ) , h 2 + h ( k ) , v h ( k 1 ) , v 2 ] δ ;

- по локальным максимумам суммы квадратов модулей элементов компонент текущего частотно-временного изображения | h z ( k ) , h | 2 + | h z ( k ) , v | 2 определяется число рассеянных радиосигналов, по параметрам которых -значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления приема - выполняется обнаружение и пространственная локализация подвижных объектов.

При этом выполняются следующие действия:

- сравниваются с порогом значения доплеровского сдвига каждого рассеянного сигнала и при превышении порога принимается решение об обнаружении подвижного объекта в анализируемом азимутально-угломестном направлении приема.

Порог выбирается исходя из минимизации вероятности пропуска объекта.

При определении географических координат обнаруженного подвижного объекта в вычислительной системе 2 выполняются следующие действия:

- по значению временной задержки сигнала τ определяется кажущаяся дальность до объекта D=τc , где c - скорость света;

- определяются пространственные координаты обнаруженного объекта по кажущейся дальности D и значениям азимута α и угла места β приема рассеянных сигналов, например, в соответствии с [4].

При этом для пары «устройство обнаружения - передатчик» строится эллипсоид равных кажущихся дальностей, соответствующих геометрическому месту точек в пространстве, сумма расстояний до которых (от передатчика до объекта и от объекта до устройства обнаружения) равна найденному значению кажущейся дальности D. По пересечению эллипсоида и значения направления (азимут и угол места) приема рассеянных сигналов определяются географические координаты обнаруженного объекта.

Результаты обнаружения и пространственной локализации воздушных объектов отображаются для повышения информативности.

Из приведенного описания следует, что устройство, реализующее предложенный способ, обеспечивает повышение вероятности обнаружения и правильной пространственной локализации далеких и слаборассеивающих объектов благодаря применению новых операций адаптивной обработки с обратной связью по полезному радиосигналу.

Таким образом, за счет применения новых операций адаптивной обработки с обратной связью по полезному радиосигналу, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот (скоростей) и временных задержек (дальностей), удается решить поставленную задачу с достижением указанного технического результата.

Источники информации

1. RU, патент, 2158002, кл. G01S 13/14, 2000 г.

2. US, патент, 7304603 B2, кл. G01S 13/02, 2007 г.

3. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. М.: Радио и связь. 2003 г.

4. RU, патент, 2444754 C15, кл. G01S 13/02, 2012 г.

Похожие патенты RU2546330C1

название год авторы номер документа
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО ПОИСКА МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ 2014
  • Чернятьев Юрий Николаевич
  • Виноградов Сергей Николаевич
  • Шевченко Валерий Николаевич
RU2557251C1
СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО ОБНАРУЖЕНИЯ ПОДВИЖНЫХ ОБЪЕКТОВ 2014
  • Чернятьев Юрий Николаевич
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2546329C1
СПОСОБ СКРЫТНОЙ РАДИОЛОКАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Чернятьев Юрий Николаевич
  • Шевченко Валерий Николаевич
RU2529483C1
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Шевченко Валерий Николаевич
RU2524401C1
СПОСОБ ПОИСКА МАЛОРАЗМЕРНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ 2013
  • Чернятьев Юрий Николаевич
  • Шевченко Валерий Николаевич
RU2546331C2
СПОСОБ СКРЫТНОЙ РАДИОЛОКАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ 2014
  • Перетятько Александр Александрович
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2557250C1
СПОСОБ СКРЫТНОГО ОБНАРУЖЕНИЯ РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2770176C1
СПОСОБ ДИСТАНЦИОННОГО МОНИТОРИНГА РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Шевченко Валерий Николаевич
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
RU2723432C2
СПОСОБ СКРЫТНОГО МОНИТОРИНГА РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
  • Шевченко Валерий Николаевич
RU2724923C2
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ И СОПРОВОЖДЕНИЯ РАДИОМОЛЧАЩИХ ОБЪЕКТОВ 2018
  • Шевченко Валерий Николаевич
  • Донец Игорь Владимирович
  • Рейзенкинд Яков Аронович
RU2716006C2

Иллюстрации к изобретению RU 2 546 330 C1

Реферат патента 2015 года СПОСОБ ПОЛЯРИЗАЦИОННО-ЧУВСТВИТЕЛЬНОГО РАДИОКОНТРОЛЯ ПОДВИЖНЫХ ОБЪЕКТОВ

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат изобретения - повышение вероятности обнаружения и правильной пространственной локализации далеких и слаборассеивающих объектов. Указанный результат достигается за счет применения новых операций адаптивной обработки с обратной связью по полезному радиосигналу, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек. 3 ил.

Формула изобретения RU 2 546 330 C1

Способ поляризационно-чувствительного радиоконтроля подвижных объектов, заключающийся в том, что используют прямые и рассеянные подвижными объектами радиосигналы, излучаемые широкополосными передатчиками радиоэлектронных систем различного назначения, принимают решеткой из N антенн компоненты горизонтальной и вертикальной поляризации векторного многолучевого электромагнитного поля прямого и рассеянных радиосигналов, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, цифровые сигналы преобразуют в двухкомпонентные прямой s ˜ = [ s ˜ h s ˜ v ] и рассеянные s = [ s h s v ] сигналы для выбранных азимутально-угломестных направлений приема, где h и v - индексы компонент горизонтальной и вертикальной поляризации, которые совместно со значением азимутально-угломестного направления приема запоминают, вычисляют и сравнивают энергию компонент s ˜ h 2 и s ˜ v 2 прямого сигнала, выбирают компоненту прямого сигнала с максимальной энергией s ˜ m a x h , v , преобразуют компоненту прямого сигнала с максимальной энергией s ˜ m a x h , v в матричный сигнал комплексной фазирующей функции A, включающий гипотетические сигналы, рассеиваемые каждым потенциальным объектом, отличающийся тем, что из матричного сигнала комплексной фазирующей функции A формируют блочный матричный сигнал фазирующей функции A ˜ = [ A 0 0 A ] , блочный матричный сигнал фазирующей функции A ˜ запоминают, для каждого выбранного азимутально-угломестного направления приема преобразуют рассеянный сигнал s в двухкомпонентный сигнал комплексного частотно-временного изображения h ( 0 ) = ( A ˜ H A ˜ ) 1 A ˜ H s , где h ( 0 ) = [ h ( 0 ) h h ( 0 ) v ] , A ˜ H - матрица, эрмитово сопряженная с A ˜ , двухкомпонентный сигнал h ( 0 ) запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал Λ ( h ( k 1 ) ) = d i a g { ( | h z ( k 1 ) , h | 2 + | h z ( k 1 ) , v | 2 ) - 1 / 2 / 2 } , h z ( k 1 ) , h и h z ( k 1 ) , v - z-e элементы компонент h ( k 1 ) , h и h ( k 1 ) , v сигнала h ( k 1 ) , k=1, 2, … - номер итерации, блочный вспомогательный матричный сигнал Λ ˜ ( h ( k 1 ) ) = [ Λ ( h ( k 1 ) ) 0 0 Λ ( h ( k 1 ) ) ] и двухкомпонентный сигнал очередного приближения комплексного частотно-временного изображения h ( k ) = [ A ˜ H A ˜ + λ Λ ˜ ( h ( k 1 ) ) ] 1 A ˜ H s , где λ - множитель Лагранжа, до тех пор, пока энергия разности текущего и запомненного предыдущего частотно-временных изображений не достигнет заданного малого значения [ h ( k ) , h h ( k 1 ) , h 2 + h ( k ) , v h ( k 1 ) , v 2 ] δ , после чего по локальным максимумам суммы квадратов модулей элементов компонент текущего частотно-временного изображения | h z ( k ) , h | 2 + | h z ( k ) , v | 2 определяют число рассеянных радиосигналов, по параметрам которых - значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления приема - выполняют обнаружение и пространственную локализацию подвижных объектов.

Документы, цитированные в отчете о поиске Патент 2015 года RU2546330C1

US 7304603 B2, 04.12.2007
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ВОЗДУШНЫХ ОБЪЕКТОВ 2010
  • Пархоменко Николай Григорьевич
  • Вертоградов Геннадий Георгиевич
  • Шевченко Валерий Николаевич
RU2444754C1
СПОСОБ ОБНАРУЖЕНИЯ И ПРОСТРАНСТВЕННОЙ ЛОКАЛИЗАЦИИ ВОЗДУШНЫХ ОБЪЕКТОВ 2010
  • Пархоменко Николай Григорьевич
  • Вертоградов Геннадий Георгиевич
  • Шевченко Валерий Николаевич
RU2444755C1
МЕТКА РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТА И СИСТЕМА И СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ И КОНТРОЛЯ ОБЪЕКТОВ 2007
  • Саблин Вячеслав Николаевич
  • Бурмистров Евгений Александрович
  • Костюков Евгений Валентинович
  • Парамонов Игорь Васильевич
RU2371734C2
СПОСОБ ЛОКАЛИЗАЦИИ ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ДЕКАМЕТРОВОГО ДИАПАЗОНА 2009
  • Сивоконь Владимир Павлович
RU2408895C2
Сборная железобетонная крепь для горных выработок 1957
  • Журов Э.М.
  • Хмельницкий Л.Я.
SU112446A1
JP 6213943 A, 05.08.1994
US 5923285 A1, 29.03.2006
WO 2003079041 A3, 25.09.2003
EP 1471364 A2, 27.10.2004.

RU 2 546 330 C1

Авторы

Чернятьев Юрий Николаевич

Рейзенкинд Яков Аронович

Шевченко Валерий Николаевич

Даты

2015-04-10Публикация

2014-02-14Подача