СПОСОБ КЛАССИФИКАЦИИ ГИДРОАКУСТИЧЕСКИХ СИГНАЛОВ ШУМОИЗЛУЧЕНИЯ МОРСКОГО ОБЪЕКТА Российский патент 2015 года по МПК G01S3/80 

Описание патента на изобретение RU2546851C1

Изобретение относится к области гидроакустики и может быть использовано в задачах определения класса объекта при разработке гидроакустических систем.

В системах, использующих методы классификации по анализу шумоизлучения целей, используют признаки, основанные на особенностях спектрального состава сигнала, так называемого портрета. В.С. Бурдик “Анализ гидроакустических систем”. Л.: Судостроение, 1988 г., стр.322.

Известен способ классификации, описанный в работе В.В. Деева и др. “Анализ информации оператором-гидроакустиком”. Л.: Судостроение. 1990 г., стр.110-111).

Способ содержит следующие операции:

- выделение параметров сигнала шумоизлучения объекта из аддитивной смеси сигнала и помехи S(t)=A(t)+Y(t), где A(t) - мощность сигнала объекта, a Y(t) - мощность помехи (мешающий сигнал);

- деление исходной реализации сигнала S(t) на r отрезков длительности T;

- вычисление спектра Y(ωk) по каждому такому отрезку, т.е. дискретное преобразование Фурье (БПФ) реализации на отрезке конечной длительности T;

- накопление (усреднение) спектров по r реализациям в - определение усредненной оценки Y′(ωk);

- усреднение полученной на предыдущем этапе спектрограммы Y′(ωk) по частотам с помощью прямоугольного окна - получение усредненной оценки Y”(ωk);

- определение порога обнаружения α по правилу Неймана-Пирсона при задаваемой вероятности ложного обнаружения Рл;

- нахождение отношения усредненных оценок Y(′ωk) и Y”(ω)k) и сравнение с пороговым значением α. Превышение порога обнаружения свидетельствует о наличии дискретной составляющей на данной частоте.

Информация о дискретных составляющих используется при решении задач распознавания (классификации) в качестве одного из основных признаков сигналов шумоизлучения различных объектов.

Недостатком этого способа является то, что антенна имеет боковые лепестки характеристики направленности. Поэтому при наблюдении за целью одновременно боковым полем характеристики направленности принимается сигнал шумоизлучения от помехи, которая включает в себя компоненты шумовой помехи, шумов моря и локальных помех судоходства. Уровень помехи будет складываться с уровнем обнаруженной цели, которая будет искажать реальные соотношения уровней и вносить дискретные составляющие, которые будут искажать результаты классификации.

Задачей изобретения является повышение вероятности правильной классификации шумоизлучения морского объекта.

Технический результат изобретения заключается в обеспечении достоверного определения классификационных признаков сигналов шумоизлучения.

Для обеспечения указанного технического результата в способ классификации гидроакустических сигналов шумоизлучения морского объекта, включающий прием антенной сигналов шумоизлучения морского объекта в аддитивной смеси с помехой гидроакустической антенной, преобразование сигнала в цифровой вид, спектральную обработку принятых сигналов, накопление полученных спектров, сглаживание спектра по частоте, определение порога обнаружения исходя из вероятности ложных тревог и при превышении порога обнаружения текущего спектра на данной частоте принятии решения о наличии дискретной составляющей, по которой классифицируют морской объект, введены новые признаки, а именно сигналы шумоизлучения морского объекта в аддитивной смеси с помехой принимают двумя полуантеннами гидроакустической антенны, производят спектральную обработку принятых сигналов на выходах полуантенн, определяя суммарный спектр мощности S 2 ( ω k ) , находят разность S Δ 2 ( ω k ) спектров мощности двух полуантенн, определяют разностный спектр S ( ω k ) 2 Δ , = S ( ω k ) 2 S ( ω k ) Δ 2 - спектр мощности шумоизлучения морского объекта, а о наличии дискретных составляющих судят при превышении порога обнаружения частотами спектра мощности шумоизлучения морского объекта.

Сущность изобретения заключается в следующем.

Работа в условиях мешающего судоходства по малошумной цели сопряжена с трудностями, связанными с влиянием мешающих целей, принимаемых, как правило, по боковому полю характеристики направленности.

Этот процесс происходит одновременно с процессом работы по основному лепестку характеристики направленности. В этом случае сигнал на выходе сумматора содержит одновременно сигнал от цели и сигнал от мешающей цели. Предложенный способ позволяет разделить эти два сигнала на выходе системы обработки. Разностная характеристика направленности, которая формируется при вычитании сигнала одной полуантенны из сигнала второй полуантенны одной антенны, по центру имеет минимум, а по боковому полю будет приниматься сигнал в разностных характеристиках (В.Н. Тюлин. «Теория акустического пеленгования». 1954 г., стр.35). Таким образом, в канале разности будет присутствовать сигнал от мешающей цели, принимаемой по боковым лепесткам. Удалить мешающий сигнал из канала суммы невозможно, поскольку он аддитивно сложился с сигналом от цели. Однако после спектрального анализа спектр на выходе суммарного канала будет содержать сумму спектров двух целей, а спектр разностного канала будет содержать спектр мешающей цели, принимаемой по боковому полю при ориентации главного нуля разностной характеристики в направлении первого максимума суммарной характеристики направленности. Поэтому, если из спектра суммарной характеристики направленности вычесть спектр разностной характеристики направленности, где находится только спектр мешающей цели, то можно получить спектр цели, которая нас интересует.

Сущность изобретения поясняется фиг 1, где приведена блок-схема устройства, реализующего способ.

Устройство, реализующее способ, содержит гидроакустическую антенну 1, разделенную на две идентичные полуантенны A1 и A2, имеющие самостоятельные выходы. Устройство (фиг.1) имеет две последовательные цепи, одна из которых включает последовательно соединенные полуантенну А1, блок 2 АЦП1, блок 4 БПФ1, блок 5 суммирования спектров и блок 8 накопления суммарных спектров.

Пример выполнения заявленного способа описан на примере устройства, его реализующего (Фиг.1), а вторая включает последовательно соединенные полуантенну А2, блок 3 АЦП2, блок 5 БПФ2, блок 7 разности спектров и блок 9 накопления разностных спектров. Выходы блоков 8 и 9 соединены с входами блока 10 определения спектра сигнала, выход которого соединен с входом блока 11 обнаружения дискретных составляющих (ДС). Второй выход блока 4 соединен со вторым входом блока 7, а второй выход блока 5 соединен со вторым входом блока 6. Выход блока 11 соединен со входом бока 12 классификации.

Блоки 2 и 3 могут быть выполнены так, как это описано в Справочнике «Цифровая обработка сигналов» изд. Радио и связь 1985 г., стр.91, блоки 4 и 5 - например, как это описано в Справочнике «Цифровая обработка сигналов». Изд. Радио и связь 1985 г., стр.14. Блоки 8 и 9 описаны, например, в книге А.А. Харкевича «Борьба с помехой». Москва: Наука, 1965 г., стр.70-71.

Реализацию способа целесообразно описать на примере работы устройства (фиг.1). Блок 11 может быть выполнен так, как это описано в книге A.M. Тюрина «Введение в теорию статистических методов в гидроакустике» Л. 1963 г., стр.127-128.

Сигналы S1(t) и S2(t) с выходов блока 1 полуантенн А1 и А2 поступают соответственно на вход блока 2 АЦП1 и блока 3 АЦП2, где АЦП1 и АЦП2 - аналого-цифровые преобразователи. Сигналы S1(k) и S2(k) из АЦП2 и АЦП3 в виде дискретных отсчетов поступают соответственно в блок 4 БПФ1 и блок 5 БПФ2 для получения комплексных спектров полуантенн А1 и А2. В блок 6 поступают вещественные (Re1) и мнимые (Jm1) отсчеты реализации комплексного спектра сигнала полуантенны А1 из блока 4 и вещественные (Re2) и мнимые (Jm2) отсчеты реализации комплексного спектра сигнала полуантенны А2 из блока 5. В блоке 6 определяется суммарный спектр мощности двух полуантенн: S 2 ( ω k ) = Re 2 S ( k ) + J m 2 S ( k ) , где Re S ( k ) = Re 1 + Re 2 , J m S ( k ) = J m 1 + J m 2 , который поступает в блок 8 накопления суммарных спектров.

В блок 7 разности спектров поступают вещественные (Re1) и мнимые (Jm1) отсчеты r-ой реализации комплексного спектра сигнала полуантенны А1 из блока 4 и вещественные (Re2) и мнимые (Jm2) отсчеты r-ой реализации комплексного спектра сигнала полуантенны А2 из блока 5. В блоке 7 определяется спектр разности мощности двух полуантенн: S Δ 2 ( ω k ) = Re 2 S ( k ) Δ + J m 2 S ( k ) Δ , где Re S ( k ) Δ = Re 1 Re 2 , J m S ( k ) Δ = J m 1 J m 2 , который поступает в блок 9 накопления разности спектров.

В блоке 8 накопления суммарных спектров определяется усредненный (накопленный) спектр S Σ 2 ( ω k ) ¯ суммарных спектров мощности (А.А. Харкевич «Борьба с помехой». Москва: Наука, 1965 г, стр.70).

В блоке 9 накопления разности спектра определяется накопленный спектр S Σ 2 ( ω k ) ¯ разности спектров мощности.

В блок 10 определения спектра сигнала из блока 8 поступает накопленный спектр мощности суммарного сигнала, а из блока 9 поступает накопленный спектр мощности канала разности.

Вычисляется разностный спектр мощности (спектр сигнала цели):

S 2 ( ω k ) Δ ¯ = S Σ 2 ( ω k ) ¯ S Δ 2 ( ω k ) ¯

Разностный спектр мощности передается в блок 11 обнаружения ДС для сглаживания прямоугольным окном, выработки порога обнаружения исходя из заданной вероятности ложных тревог (A.M. Тюрин. Введение в теорию статистических методов в гидроакустике. Л., 1963 г., стр.127-128).

Все превысившие порог дискретные составляющие передаются в блок 12 классификации для выработки классификационных признаков по спектру сигнала.

Таким образом, технический результат, заключающийся в устранении влияния спектра помехи, принимаемой по боковому полю характеристики направленности, и обеспечении правильного определения классификационных спектральных признаков, принимаемых по основному лепестку характеристики направленности, достигнут.

Похожие патенты RU2546851C1

название год авторы номер документа
Способ обнаружения шумящих в море объектов 2019
  • Волкова Анна Александровна
  • Консон Александр Давидович
  • Янпольская Алиса Александровна
RU2726293C1
СПОСОБ КЛАССИФИКАЦИИ ГИДРОАКУСТИЧЕСКИХ СИГНАЛОВ ШУМОИЗЛУЧЕНИЯ МОРСКОГО ОБЪЕКТА 2015
  • Знаменская Татьяна Константиновна
RU2603886C1
Способ классификации гидроакустических сигналов шумоизлучения морских объектов 2018
  • Величкин Сергей Максимович
  • Зеленкова Ирина Дмитриевна
  • Никулин Максим Николаевич
  • Тимошенков Валерий Григорьевич
RU2711406C1
Способ обнаружения и классификации гидроакустических сигналов шумоизлучения морского объекта 2019
  • Знаменская Татьяна Константиновна
  • Мнацаканян Александр Ашетович
RU2726291C1
Способ классификации шумоизлучения морского объекта 2021
  • Знаменская Татьяна Константиновна
RU2776958C1
Способ отображения гидроакустической информации 2019
  • Тимошенков Валерий Григорьевич
RU2733938C1
Способ классификации гидроакустических сигналов шумоизлучения морского объекта 2022
  • Знаменская Татьяна Константиновна
RU2801677C1
Способ классификации, определения координат и параметров движения шумящего в море объекта в инфразвуковом диапазоне частот 2019
  • Касаткин Борис Анатольевич
  • Касаткин Сергей Борисович
RU2718144C1
Способ классификации гидроакустических сигналов шумоизлучения морского объекта 2020
  • Знаменская Татьяна Константиновна
  • Афанасьев Александр Николаевич
RU2754602C1
Устройство классификации шумящих объектов 2017
  • Волкова Анна Александровна
  • Филободченко Максим Арсеньевич
RU2694271C2

Реферат патента 2015 года СПОСОБ КЛАССИФИКАЦИИ ГИДРОАКУСТИЧЕСКИХ СИГНАЛОВ ШУМОИЗЛУЧЕНИЯ МОРСКОГО ОБЪЕКТА

Изобретение относится к области гидроакустики и может быть использовано в задачах определения класса объекта при разработке гидроакустических систем. Предложен способ классификации гидроакустических сигналов шумоизлучения морского объекта, включающий прием антенной сигналов шумоизлучения морского объекта в аддитивной смеси с помехой гидроакустической антенной, преобразование сигнала в цифровой вид, спектральную обработку принятых сигналов, накопление полученных спектров, сглаживание спектра по частоте, определение порога обнаружения исходя из вероятности ложных тревог и при превышении порога обнаружения текущего спектра на данной частоте принятии решения о наличии дискретной составляющей, по которой классифицируют морской объект, в котором сигналы шумоизлучения морского объекта в аддитивной смеси с помехой принимают двумя полуантеннами гидроакустической антенны, спектральную обработку принятых сигналов производят на выходах полуантенн, суммируют спектры мощности на выходах двух полуантенн, определяя суммарный спектр мощности S 2 ( ω k ) , находят разность S Δ 2 ( ω k ) спектров мощности на выходах двух полуантенн, определяют разностный спектр S 2 ( ω k ) Δ ¯ = S Σ 2 ( ω k ) ¯ S Δ 2 ( ω k ) ¯ - спектр мощности шумоизлучения морского объекта, а о наличии дискретных составляющих судят при превышении порога обнаружения частотами спектра мощности шумоизлучения морского объекта. Это обеспечивает устранение влияния спектра помехи, принимаемой по боковому полю характеристики направленности гидроакустической антенны и правильное определение классификационных спектральных признаков. 1 ил.

Формула изобретения RU 2 546 851 C1

Способ классификации гидроакустических сигналов шумоизлучения морского объекта, включающий прием антенной сигналов шумоизлучения морского объекта в аддитивной смеси с помехой гидроакустической антенной, преобразование сигнала в цифровой вид, спектральную обработку принятых сигналов, накопление полученных спектров, сглаживание спектра по частоте, определение порога обнаружения исходя из вероятности ложных тревог и при превышении порога обнаружения текущего спектра на данной частоте принятии решения о наличии дискретной составляющей, по которой классифицируют морской объект, отличающийся тем, что сигналы шумоизлучения морского объекта в аддитивной смеси с помехой принимают двумя полуантеннами гидроакустической антенны, производят спектральную обработку принятых сигналов на выходах полуантенн, суммируют спектры мощности с выходов двух полуантенн, определяя S 2 ( ω k ) , находят разность S Δ 2 ( ω k ) спектров мощности с выходов двух полуантенн, накапливают и сглаживают по частоте суммарный спектр мощности, накапливают и сглаживают спектр мощности разности, определяют спектр мощности шумоизлучения морского объекта как разностный спектр S 2 ( ω k ) Δ ¯ = S Σ 2 ( ω k ) ¯ S Δ 2 ( ω k ) ¯ , определяют порог обнаружения, а о наличии дискретных составляющих судят по превышению порога обнаружения частотами спектра мощности шумоизлучения морского объекта.

Документы, цитированные в отчете о поиске Патент 2015 года RU2546851C1

СПОСОБ КЛАССИФИКАЦИИ ШУМЯЩИХ ОБЪЕКТОВ 2003
  • Тимошенков В.Г.
  • Дядченко Т.З.
RU2262121C2
СПОСОБ ГИДРОАКУСТИЧЕСКОГО ОБНАРУЖЕНИЯ И ВЫТЕСНЕНИЯ ПЛОВЦОВ И МОРСКИХ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ ОТ СИСТЕМЫ ВОДОЗАБОРА АТОМНОЙ ЭЛЕКТРОСТАНЦИИ 2003
  • Бахарев С.А.
RU2256196C2
УСТРОЙСТВО ГИДРОАКУСТИЧЕСКОГО НАБЛЮДЕНИЯ ЗА ПОДВОДНОЙ СИГНАЛЬНО-ПОМЕХОВОЙ ОБСТАНОВКОЙ 2006
  • Антонов Владимир Николаевич
  • Егоров Александр Васильевич
  • Жиляев Евгений Анатольевич
  • Ильин Леонид Иосифович
  • Исай Ирина Пантелеймоновна
  • Калминский Борис Григорьевич
  • Коник Григорий Борисович
  • Павлов Валерий Михайлович
  • Прошкин Станислав Гаврилович
  • Чернядев Евгений Валерьевич
RU2309872C1
СПОСОБ КЛАССИФИКАЦИИ ЭХО-СИГНАЛА ГИДРОЛОКАТОРА 2011
  • Тимошенков Валерий Григорьевич
RU2466419C1
ПРИЕМОИЗЛУЧАЮЩАЯ КОГЕРЕНТНАЯ ГИДРОАКУСТИЧЕСКАЯ СИСТЕМА (ПИК-ГАС) 2000
  • Щецов В.А.
  • Мотузюк В.В.
  • Полевик И.А.
  • Полевик А.Г.
RU2204150C2
US5886661 A, 23.03.1999

RU 2 546 851 C1

Авторы

Афанасьев Александр Николаевич

Знаменская Татьяна Константиновна

Даты

2015-04-10Публикация

2013-12-11Подача